矩阵分解

有时候存在两种对象,他们之间会受到某种共同潜在因素的操控,如果找出这些潜在因素,就可以对用户行为进行预测,这是推荐系统常用方法之一。
假设我们现在去调查每个人购买的公仔数目,ABCDE代表5个人,每个人或者每个公仔实际上都是有着傲娇的属性或天然呆的属性
我们可以用vector去描述人和公仔的属性,如果某个人的属性和某个公仔的属性是match的,即他们背后的向量很像(内积值很大),这个人就会偏向于拥有更多这种类型的公仔
在这里插入图片描述
矩阵表达式
但是,我们没有办法直接观察某个人背后这些潜在的属性,也不会有人在意一个肥宅心里想的是什么,我们同样也没有办法直接得到动漫人物背后的属性;我们目前有的,只是动漫人物和人之间的关系,即每个人已购买的公仔数目,我们要通过这个关系去推测出动漫人物与人背后的潜在因素(latent factor)
在这里插入图片描述
我们可以把每个人的属性用vector r A , r B , r C r D , r E r^{A},r^{B},r^{C}r^{D},r^{E} rA,rB,rCrD,rE来表示,而动漫人物的属性则用vector r 1 , r 2 , r 3 r 4 r^{1},r^{2},r^{3}r^{4} r1,r2,r3r4来表示,购买的公仔数目可以被看成是matrix X X X,对 X X X来说,行数为人数,列数为动漫角色的数目
假设:矩阵 X X X里的每个元素,都属于人的向量和属于动漫角色的向量的内积。
比如, r A ⋅ r 1 ≈ 5 r^{A}\cdot r^{1}\approx 5 rAr15,表示 r A r^{A} rA r 1 r^{1} r1的属性比较贴近。
接下来就用下图所示的矩阵相乘的方式来表示这样的关系,其中 K K K为latent factor的数量,这是未知的,需要你自己去调整选择
我们要找一组 r A ∼ r E r^{A}\sim r^{E} rArE r 1 ∼ r 4 r^{1}\sim r^{4} r1r4,使得右侧两个矩阵相乘的结果与左侧的matrix 越接近越好,可以使用SVD(奇异值分解)的方法求解
在这里插入图片描述
预测
但是由于部分信息丢失,这时就难以用SVD精确描述,但是可以用梯度下降的方法求解,损失函数如下:
在这里插入图片描述
其中 r i r^{i} ri值的是人背后的latent factor,r^{j}指的是动漫角色背后的latent factor,我们要让这两个vector的内积与实际购买该公仔的数量 n i j n_{ij} nij越接近越好,这个方法的关键之处在于,计算上式时,可以跳过missing的数据,最终通过gradient descent求得 r i r^{i} ri r j r^{j} rj的值
在这里插入图片描述
假设latent factor的数目等于2,则人的属性 r i r^{i} ri和动漫角色的属性 r j r^{j} rj都是2维的vector,这里实际进行计算后,把属性中较大值标注出来,可以发现:
1、人:A、B属于同一组属性,C、D、E属于同一组属性
2、动漫角色:1、2属于同一组属性,3、4属于同一组属性
3、结合动漫角色,可以分析出动漫角色的第一个维度是天然呆属性,第二个维度是傲娇属性
4、接下来就可以预测未知的值,只需要将人和动漫角色的vector做内积即可
这也是推荐系统的常用方法
在这里插入图片描述
实际上除了人和动漫角色的属性之外,可能还存在其他因素操控购买数量这一数值,因此我们可以将式子更精确地改写为:
在这里插入图片描述
其中 b A b_{A} bA表示A这个人本身有多喜欢买公仔, b 1 b_{1} b1则表示这个动漫角色本身有多让人想要购买,这些内容是跟属性vector无关的,此时loss function被改写为:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值