一、模糊集的概念
普通集合-----现代数学的基础; 模糊集合-----模糊数学的基础
论域:通常我们在处理某一问题时,总是把议题限制 在某一个范围内,称此“范围”为相应问题的论域。 设 是论域 上的一个集合,对任意 ,令
则称 为集合A的特征函数,特征函数
在u=
处的取值
称为
对A的隶属度。
Tip:对任意一个集合A都有唯一确定的一个特征函数与之对应, 同时任一特征函数都唯一确定了一个集合。所以集合A与特征函数是等价的,集合A就是其特征函数值等于1的元素所构成的集合。
模糊集合概念:
设U是论域, 是把任意 映射为[0,1]上某 个值的函数,即
uF :U->[0,1]
=1 表示u完全属于 F
u->
=0 表示u完全不属于 F
0< <1 表示u部分属于 F
则称 为定义在U上的一个隶属函数,由
所构成的集合F称为U上的一个模糊集,
称为u对 F的隶属度。
二、模糊集合的运算
定义:模糊集A的一般表达形式:
三、隶属度函数的建立
建立隶属度函数的基本原则:
⑴表示隶属度函数的模糊集合必须是凸模糊集合。
⑵变量所取隶属函数通常是对称和平衡的。
⑶隶属函数要符合人们的语义顺序,避免不恰当的重叠。
⑷论域中的每个点应该至少属于一个隶属函数的区域。
⑸同一输入没有两个隶属函数会同时有最大隶属度。
⑹当两个隶属度函数重叠时重叠部分对两个隶属度函数 的最大隶属度不应该有交叉
四、模糊逻辑、模糊逻辑推理和合成
模糊逻辑是研究含有模糊概念或带有模糊 性的陈述句的逻辑。
模糊逻辑推理是不确定性推理方法的一种, 其基础是模糊逻辑,它是在二值逻辑三段论的 基础上发展起来的。
4.1 二值逻辑
(1)命题 具有真假意义的语句称为命题,真假两者必居其一且只居 其一。一个简单句子构成的命题称简单命题。把两个或两个 以上的命题用命题联结词联结起来就称为复合命题。可以表 示更复杂的内容。
(2)逻辑联结词
蕴涵 ->表示“如果 ,那么 ”。即如果命题P成立, 则命题Q也成立。
等价 <->表示两个命题的真假相同。是“当且仅当”的意思
4.2 模糊逻辑及其基本运算
模糊逻辑是研究模糊命题的逻辑,而模糊命题是指含有 模糊概念或者是带有模糊性的陈述句。模糊命题的真值不是 绝对的“真”或“假”,而是反映其以多大程度隶属于 “真”,模糊命题的真值就是隶属(度)函数。所以真值的 运算也就是隶属函数的运算。
4.3 基本运算:
记P、Q、R为三个模糊单命题,那么
1、模糊逻辑补(非)
2、模糊逻辑合取(与)
3、模糊逻辑析取(或)
4.4 模糊逻辑及其基本运算
根据以上模糊逻辑的基本运算定义,可以得出以下 模糊逻辑运算的基本定律: 幂等律、交换律、结合律、吸收律、分配律 双否律、德﹒摩根律、常数运算法则 注:与二值逻辑不同之处是二值逻辑中的互补律。
4.5模糊语言逻辑
模糊语言逻辑是由模糊语句构成的一种模拟人思维的逻 辑,模糊语言可以对自然语言的模糊性进行分析和处理。
几个重要概念:
1.模糊数:连续论域(实数域)U中的一个模糊数F是一个U 上的正规凸模糊集。 “大约5” 、 “10左右”
2.正规集合的含义是隶属度函数的最大值为1;
3.凸模糊集:在隶属度函数曲线上任意两点之间曲线上的任 一点所表示的隶属度的值都大于或等于两点隶属度值中较小 的一个。
4.语言值: 在语言系统中那些与数值有直接联系的词,如: 长、短、多、少、高、低、重、清、大、小等,或者由它们 再加上语言算子(如:很、非常、较、偏等)而派生出来的 词组,如:不太大、非常高、偏重等都被称为语言值。语言值一般是模糊的,可以用模糊数来表示。
4.6 模糊语言逻辑
定义:语言变量是用一个五元素的集合(X、T(X)、U、 G、M )来表征的。
X:语言变量的名称;
T(X):语言变量所包含语言值名称的集合(每个语言 值都是定义在U上的模糊集;
U:语言变量X 的论域;
G:语法规则,产生X 的语言值规则;
M:指模糊子集的隶属度函数
(2)语言算子分类
“很”、“较”、“非常”、“大约”、“有点”
1.语气算子
“集中化算子” :——“很” 、 “极” 、 “非常” 、 “十 分” 、 “特别” (强化算子)
“松散化算子”——“比较” 、 “微” 、 “稍许” 、 “有 点” 、 “略”
2.模糊化算子
3.判定化算子
判定化模糊为趋向于清晰 “偏向”、“大半是”、
4.7 模糊逻辑推理
主要不确定性推理方法有:MYCIN法、主观贝 叶斯方法、证据理论法和模糊逻辑推理法。 模糊逻辑推理是不确定性推理方法的一种,其基础是 模糊逻辑。模糊逻辑推理是以模糊判断为前提的,运用模 糊语言规则,可推出一个新的模糊判断结论的方法。
模糊逻辑推理方法有:扎德(Zadeh)方法、玛达尼 (Mamdani)方法、鲍德温(Baldwin)方法、耶格 (Yager)方法、楚卡莫托(Tsukamoto)方法。