评分模型报告分享

关注 “番茄风控大数据”,获取更多数据分析与风控大数据的实用干货。
 

在自然科学界有一条法则,叫简约法则,叫越简单越接近正确,如果能用越少信息评估的数,就千万别用复杂的。所以尽量少用信息去评估一个事物,而不是多用信息。在做模型也如此,当然包括我们常提的评分模型。

现在计算机的对数据的处理能力越来越强,使处理数据跟复杂信息越来越强,使得我们对复杂信息非常迷恋。人们总是相信输入的数值越多,得到的估值模型会越准确。

问题的关键是,越来越多的信息其实伴随着噪音,你输入越来越多信息的同时,其实输入的噪音也越来越大,所以也产生越来越多的误差。个人认为在模型的特征处理和特征筛选时候,也是在不断简化模型的过程。所以最终在评分模型入模的变量顶多也就是十几个,一般还不会多于三四十个。本篇文章给各位分享之前做过的某个项目里的建模报告,里面就涉及具体的变量明细情况。

一.建模的目标:
用于线下准入判断

二.建模的目标变量:
Dependent定义:
1 - 用户授信后2个月内账单历史逾期15+(只看订单金额>1的账单);
0 - 其他

三.建模样本:
用户授信时间到2016/12/01,定义样本的观察窗口
在这里插入图片描述
满足建模条件的人数为22,000
在这里插入图片描述
建模样本取授信时间6、7月,验证样本1取授信时间5月,验证样本2取授信时间1-4月:
在这里插入图片描述
四.模型结果:
1)模型变量:
在这里插入图片描述
2)逻辑回归参数估计:
在这里插入图片描述
3)模型评估
a)与第二版比较
在建模样本上,新模型达到29%的KS,相对第二版模型有58%的KS lift;
前20%的人群中抓出41%的bad,比第二版模型提高32%;
在所有人群上,新模型达到29%的KS,相对第二版模型有33%的KS lift;
前20%的人群中抓出42%的bad,比第二版模型提高25%;
在这里插入图片描述
b)在FPD10+的表现
新模型在FPD10+依然表现稳定,且优于第二版决策树。
在这里插入图片描述
c)在贷款订单的表现
把模型应用到有短贷订单的用户人群,以短贷订单是否逾期15+/7+作为dependant,模型效果如下:
在这里插入图片描述
五.模型切分效果
在这里插入图片描述
六.模型各个验证指标展示
ROC值
在这里插入图片描述
lift值
在这里插入图片描述
KS值
在这里插入图片描述
psi情况:
在这里插入图片描述
六.最后是关于变量的说明与分箱的得分
在这里插入图片描述
总结点:

1.我们可以发现新上线的评分模型的的KS还不算特别高,但是相对之前的模型都有不少程度有KS lift,我们后续可以对这个模型进行调优监控,看下各个指标是否仍处于合理的范围内
2.我们发现最终入模的变量的个数,模型变量也比较精简符合我们开篇所提简约法则,也就是在十三个左右,变量分箱合理


十年职场生涯,这个长期混迹在风控界和科技界,摸爬滚打的大叔,曾经就职于全国最大的固网运营商平台、国内最大的ERP软件公司和一家老牌的互金公司,如果你想了解他,欢迎关注 “番茄风控大数据”一起学习一起聊!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值