KPConv小记

本文档介绍了KPConv训练流程,包括pipeline概述、数据集类的实现和训练脚本配置。在pipeline中,初始化Config、数据集类、输入管道等步骤是关键。数据集类需要实现加载点云、生成批次等功能。训练脚本则涉及模型训练的配置和管理。
摘要由CSDN通过智能技术生成

初学者,不对的地方多多指点。
翻译:https://github.com/HuguesTHOMAS/KPConv/blob/master/doc/new_dataset_guide.md

pipeline概述

在开始对数据集进行训练之前,训练脚本会初始化一组变量和类。初始化步骤如下:
1.创建Config。这个实例将包含定义网络的所有参数。
2.创建数据集类的实例。这个实例将处理数据和input pipeline。这是您必须实施的类,以根据您自己的数据训练我们的网络
3.在内存中加载输入点云。大多数数据集将适合一个32GB内存的计算机。如果没有足够的内存,就必须重新设计输入管道。
4.初始化tensorflow input pipeline,它是一个tf.dataset,该对象将创建并输入向网络输入batches。
5.创建网络模型类的实例。这个类包含定义网络的tensorflow操作。
6.创建ModelTrainer类的实例。这个类处理模型的训练

然后训练就可以开始了。

数据集类

这个类有几个角色。首先,在这里定义数据集参数(类名、数据路径、数据的性质……)。然后这个类将保存加载到内存中的点云。最后,它还定义了Tensorflow input pipeline。为了提高效率,我们的实现使用一个并行的输入队列,将batches发送到网络。

这里,我们将对需要在新的dataset类中实现的每个基本方法进行描述。要了解更多细节,请遵循当前数据集的实现,其中包含许多作为注释的指示。

一. __init__方法:这里你必须定义数据集的参数。注意,数据集类必须是实现泛型方法的通用Dtaset类的子类。他们有一些东西必须在这里被定义:

1.标签:定义一个字典:self.label_to_names,调用self.init_labels()方法,并定义self.ignored_labels中应该忽略哪些标签。
2.网络模型:此数据集上使用的模型类型(“classification”、“segmentation”、“multi_segmentation”或“cloud_segmentation”)。
3.并行输入队列中使用的CPU线程数。
4.数据路径和分割:您可以按照自己的意愿管理数据,这些变量只在您将要实现的方法中使用,所以您不必完全遵循其他数据集类的符号。

二. load_subsampled_clouds方法:在这里将数据加载到内存中。根据您的数据集(如果这是一个分类或分割任务,3D场景或3D模型),您将不必加载相同的变量。只需遵循现有数据集的实现即可。

三. get_batch_gen方法:该方法应该返回python生成器。根据这些generator处理tf.dataset。它在self.init_input_pipeline或self.init_test_input_pipeline方法中调用。除了生成器之外,它还必须返回生成的类型和形状。您可以重新设计生成器或使用我们实现的生成器。生成器返回np.arrays(数组),但是从pipeline的这一点开始,它们将被转换为tensor(张量)。

四. get_tf_mapping方法:该方法返回一个映射函数,该函数接受生成的batches并为网络创建所有变量。请记住,从这一点来看,我们正在定义操作的张量流图。这里没有太多需要实现的东西,因为大部分工作是由两个通用函数完成的:self.tf_augment_input和self.tf_xxxxxxxxx_input,其中xxxxxxxxx可以是“classification”的“segmentation”,具体取决于任务。在这里要做的唯一重要的事情就是定义将要馈送到网络的功能。

训练脚本和配置类

在训练脚本中,您必须创建一个从Config类继承的类。在这里,您将通过覆盖属性来定义所有网络参数

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值