KPConv(pytorch)复现

KPConv(pytorch)复现

最近刚看了相关的点云分割数据,准备吧KPConv跑通,用的是服务器,已经装好的11.7的CUDA,链接在github上。

装环境

已有CUDA,对照着装torch即可,还有官方代码中的INSTALL.md,对着安装即可。最后是有一布编译,linux和windows有不同的方法。windows上可能有些跟官方说的不一样,这里给出一种尝试

python setup.py build_ext --inplace

这样windows上的就OK了,需要在两个文件夹分别执行,而且生成文件的名称需要改一下,看一下源码里是怎么写的,改好就行了,linux生成的文件也一样,要不然跑不起来,报错找不到。

点云分割训练

在doc文件夹里面有对应不同训练的说明文件,按照说明执行即可

文件存放位置

这里有点乱,说明中是按照linux文件放置的,我在这里用windows说明一下。比方说,我的文件是这样设置的:

E:\github_code\KPConv-PyTorch-master

那么我的数据应该放在

E:\Data\S3DIS

还有一点就是,S3DIS这里是数据,Area_1,Area_2…类似这样的文件夹

下面开始训练

什么参数都别动!!!

我就是很手贱,改了一下batch,一直在报错

print("ERROR: It seems that the calibration have not reached convergence. Here are some plot to understand why:")
print("If you notice unstability, reduce the expected_N value")
print("If convergece is too slow, increase the expected_N value")

这里主要与上面的breaking有关,设置成了false就会执行上面的,但是他也给出了相应的调整方案,但是我调了很久都不是很合适。

下面的代码主要是与breaking相关:

if finer and np.max(np.abs(smooth_errors)) < converge_threshold:
	breaking = True
	break

下面就可以训练了,我还在训练中,基本的占用在3G到5G显存,不是很高。

训练还没结束

等结束了,写一下分割结果。。。
未完待续。

好的,我明白了。您想了解如何使用 PyTorch 复现一个深度学习模型,是吗? 首先,您需要确保已经安装了 PyTorch。然后,您需要编写模型的代码,并将其保存在一个 Python 文件中。接下来,您可以使用 PyTorch 提供的数据加载器来加载训练数据和测试数据。最后,您可以使用 PyTorch 提供的优化器和损失函数来训练模型。 以下是一个简单的示例,展示了如何使用 PyTorch 复现一个简单的线性回归模型: ```python import torch import torch.nn as nn import torch.optim as optim # 定义模型 class LinearRegression(nn.Module): def __init__(self): super(LinearRegression, self).__init__() self.linear = nn.Linear(1, 1) def forward(self, x): out = self.linear(x) return out # 准备数据 x_train = torch.tensor([[1.0], [2.0], [3.0], [4.0]]) y_train = torch.tensor([[2.0], [4.0], [6.0], [8.0]]) # 初始化模型、损失函数和优化器 model = LinearRegression() criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=0.01) # 训练模型 for epoch in range(1000): optimizer.zero_grad() outputs = model(x_train) loss = criterion(outputs, y_train) loss.backward() optimizer.step() # 测试模型 x_test = torch.tensor([[5.0], [6.0], [7.0], [8.0]]) y_test = model(x_test) print(y_test) ``` 这个示例中,我们定义了一个简单的线性回归模型,使用均方误差作为损失函数,使用随机梯度下降作为优化器。我们使用 PyTorch 提供的数据类型 `torch.tensor` 来准备数据,并使用 `model.parameters()` 来获取模型的参数。在训练过程中,我们使用 `optimizer.zero_grad()` 来清除梯度,使用 `loss.backward()` 来计算梯度,使用 `optimizer.step()` 来更新参数。在测试过程中,我们使用训练好的模型来预测新的数据。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值