VTK 与mtik 矩阵转换

1 篇文章 0 订阅

已知器械A和器械B在同一坐标系,且为刚性连接(器械A与器械B初始位姿矩阵为matrixA、matrixB),已知器械B移动到某一个位置后得到matrixB1,计算器械A当前的位姿矩阵。

// matrixA和matrixB为已知位姿矩阵
vtkSmartPointer<vtkMatrix4x4> matrixA;
vtkSmartPointer<vtkMatrix4x4> matrixB;

vtkSmartPointer<vtkMatrix4x4> transMatrixB = vtkSmartPointer<vtkMatrix4x4>::New();
transMatrixB->Identity();

// 首先计算器械B初始位置与当前位置之间的旋转矩阵
matrixB1->Invert();
vtkMatrix4x4::Multiply4x4(matrixB1, matrixB, transMatrixB);

// 计算得出当前器械A位姿矩阵
vtkSmartPointer<vtkMatrix4x4> MatrixA1 = vtkSmartPointer<vtkMatrix4x4>::New();
MatrixA1->Identity();
vtkMatrix4x4::Multiply4x4(transMatrixB, matrixA, MatrixA1);

已知器械A和器械C在同一坐标系下且为刚性连接,将器械A转换至器械C坐标系下求转换矩阵

mitk::AffineTransform3D::Pointer bonetransformA  = mitk::AffineTransform3D::new();
bonetransformA->SetMatrix(matrixA);
bonetransformA->SetOffset(offsetA);

// 将器械C位姿矩阵求逆
matrixC->Invert();
mitk::AffineTransform3D::Pointer bonetransformC  = mitk::AffineTransform3D::new();
bonetransformC->SetMatrix(matrixC);
bonetransformC->SetOffset(offsetC);

// 计算器械A与器械C的转换关系 A-->C
mitk::AffineTransform3D::Pointer combineTransform  = mitk::AffineTransform3D::new();
combineTransform->Compose(bonetransformA);
combineTransform->Compose(bonetransformC);

// 将A--->C 转换为 C--->A   ToolHead2ImageHeadMatrix
mitk::AffineTransform3D::Pointer combineTransformInvers  = mitk::AffineTransform3D::new();
combineTransform->GetInverse(combineTransformInvers);
VTK (Visualization Toolkit) 是一个开源的跨平台科学可视化库,主要用于三维数据的处理、渲染和交互。MPR (Maximum Intensity Projection) 是一种医学图像处理技术,用于生成二维切片图像,通过显示各层面影像中灰度值最大的像素来突出显示结构。 在VTK中,要对一个模型进行MIP投影并进行旋转,你需要先将数据转换vtkImageData,并使用vtkImageReslice filter 进行切片操作。对于旋转,可以使用vtkTransform或vtkOrientationMarkerWidget来应用旋转矩阵。这个矩阵通常是一个4x4的变换矩阵,包含了绕X、Y、Z轴的旋转角度以及可能的平移。 创建旋转矩阵的基本步骤包括: 1. 初始化一个旋转矩阵(例如vtkMatrix4x4) 2. 设置旋转的角度和轴向 3. 应用到数据对象上 具体代码示例可能如下: ```python import vtk from vtk.util import numpy_support # 创建旋转矩阵 rot = vtk.vtkMatrix4x4() rot.RotateWXYZ(rotate_angle, [0, 0, 1]) # 第三个参数是旋转轴 # 获取输入数据的坐标系统 input_data = ... # 假设这是一个vtkImageData input_points = input_data.GetPoints() # 应用旋转矩阵到点集 transform = vtk.vtkTransform() transform.SetMatrix(rot) transform.TransformPoints(input_points) # 使用旋转后的点集创建新的reslice filter reslice = vtk.vtkImageReslice() reslice.SetInputData(input_data) reslice.SetInterpolationModeToNearestNeighbor() # 或者其他适合的插值方法 reslice.SetOutputWholeExtent(transform.GetOutput()->GetBounds()) reslice.SetTransform(transform) # 现在你可以进一步处理旋转后的MIP图像了 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值