大模型虽然很强,但总不能什么都懂你——想让它说得更准、听得更懂,就得**“调教”一下**,这就是:模型微调(Fine-tuning)。
目录
- 三种主流微调方法全解析(LoRA / Adapter / Prompt Tuning)
- LoRA 是啥?不是改模型,是“偷偷加点料”
- Adapter 是啥?像插“外挂模块”,每层塞一点新知识
- Prompt Tuning 是啥?不是“写提示词”,而是“学提示向量”
- 微调成本(假设无 GPU 本地算力,需租云平台)
- 模型部署成本(云端长期上线服务)
🔧 1. 三种主流微调方法全解析(LoRA / Adapter / Prompt Tuning)
方法 | 本质是啥 | 动了模型哪儿? | 优点 | 缺点 |
---|---|---|---|---|
LoRA | 加个轻量矩阵补丁 | Transformer 里注意力层的 Q/V | 几百 MB,快、省、效果不错 | 只适用于结构可控的模型 |
Adapter | 每层插一个可训练模块 | Transformer 各层之间 | 多任务灵活切换,可插拔 | 推理稍慢,结构复杂一点 |
Prompt Tuning | 训练一段“模型专属前缀向量” | 输入文本前面拼上向量,不动模型 | 超轻量(几十 KB),训练超快 | 任务越复杂越难调,精度不如 LoRA |
🧠 2. LoRA 是啥?不是改模型,是“偷偷加点料”
🔍 类比:你想在不开脑的前提下偷偷给 Transformer 植入一点“记忆补丁”。
它不会去改模型原始结构,而是:
在每层注意力机制的 Query(Wq)和 Value(Wv)矩阵上,加上一个 可训练小矩阵补丁。
🔩 原理图:
原始计算:
Q = X × Wq
LoRA 改造后:
Q = X × (Wq + B × A)
↑ ↑
可训练 可训练
- A 是降维矩阵(r × d)
- B 是升维矩阵(d × r)
- 总共只训练 A 和 B,其他全冻结
💻 LoRA 代码简化示例(用 peft,选中 query/value 层):
from peft import get_peft_model, LoraConfig, TaskType
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
lora_config = LoraConfig(
r=8, # 降维维度
lora_alpha=32, # 缩放系数
target_modules=["query", "value"], # 注意:加在哪些层要对得上模型结构
task_type=TaskType.SEQ_CLS
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
📌大家别被代码劝退!我放代码是为了说明 Python 封装得很好,实际代码就这几行,非常友好 😊
🧠 3. Adapter 是啥?像插“外挂模块”,每层塞一点新知识
🔍 类比:你不改模型主板,只在中间每层插个“小外挂”,训练这些外挂就够了。
每层 Transformer 都是处理输入的“中继站”,Adapter 就是在中间偷偷插个小模块,专门拿来训练的。
整个流程大致是这样的:
-
先降维 + 激活 + 升维:
把输入缩小成低维(比如从 768 降到 64),再用非线性函数加工一下,然后再升回去(64 ➜ 768)。 -
输出加和:
把这个加工后的输出,和原来那层的输出相加起来,再一起传给下一层。
输入 →
Linear(降维)→ 非线性 → Linear(升维) → 加回主干
💻 Adapter 代码简化示例:
from transformers import AutoModelForSequenceClassification
import transformers.adapters # 要安装 adapters 扩展包
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
# 添加 Adapter 模块
model.add_adapter("my_adapter")
model.train_adapter("my_adapter") # 冻结主干,只训练 adapter
model.save_adapter("./adapter_model", "my_adapter") # 导出只需几十MB
💡 你可以为不同任务分别训练 Adapter 模块,就像“插卡带”一样部署时灵活切换,特别适合一个模型跑多个任务的场景。
比如:你可以在一个大模型里,为不同的任务各自训练一个 Adapter 模块,
任务名 | 对应 Adapter 名称 |
---|---|
情感分类任务 | adapter_sentiment |
法律文本总结 | adapter_law |
医疗问答系统 | adapter_medical |
这些 Adapter 是独立的小模块,平时你只训练和保存 Adapter 的参数,不动大模型。
那部署的时候呢?
你只需要加载你当前任务需要的那个 Adapter,比如做法律问答时:
model.load_adapter("adapter_law")
这样模型就像“插上专用外挂”,立刻切换成懂法律的角色。
🧠 4. Prompt Tuning 是啥?不是“写提示词”,而是“学提示向量”
🔍 类比:不是告诉模型你要干嘛,而是训练一段“潜意识引导前缀”。
和写 “你是一个助理,请…” 这种文字提示不同,Prompt Tuning 是:
✅ 训练一段 embedding 向量(不可读、不代表词),直接拼在输入文本前面。
🔩 输入结构图:
输入 = [虚拟 Prompt 向量 1~8] + [真实文本 Token]
这 8 个向量是你训练出来的参数,主干模型完全不动
💻 Prompt Tuning 简化代码(用 peft 框架):
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PromptTuningConfig, get_peft_model, TaskType
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
peft_config = PromptTuningConfig(
task_type=TaskType.SEQ_CLS,
num_virtual_tokens=8, # 虚拟向量个数
tokenizer_name_or_path="bert-base-uncased"
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
💡 最终生成的“Prompt”不是汉字,不是词,是 8 个模型学出来的向量,你看不懂但模型很懂。
🧠 5. 微调成本(假设无 GPU 本地算力,需租云平台)
以下是以**阿里云弹性 GPU 实例 + 本地调试平台(如 Colab)**为估算基础,按“租用+上传数据+训练+导出模型”流程估算:
模型 | 参数规模 | 推荐训练方式 | 推荐云平台配置 | 训练时长(估算) | 成本估算(元) |
---|---|---|---|---|---|
ChatGLM3-6B | 6B | LoRA / QLoRA | 阿里云 ECS + A10 (24G) | 2~3 小时 | ¥80~¥150 |
Qwen-7B | 7B | QLoRA | 阿里云 P100 实例 | 3~4 小时 | ¥120~¥200 |
BGE-Large-zh | 300M | 全量 / LoRA | 阿里云 3090 / T4 | <1 小时 | ¥20~¥40 |
Mistral-7B | 7B | QLoRA | 阿里云 A100 (40G) | 2~3 小时 | ¥180~¥300 |
MiniCPM-2B | 2B | LoRA | 阿里云 T4 / A10 | 40 分钟~1 小时 | ¥15~¥30 |
6. 模型部署成本(云端长期上线服务)
以阿里云为代表的国内主流平台,常见 GPU 部署成本如下(按弹性GPU服务器 + 推理框架搭建估算):
显卡类型 | 适合模型 | 推理能力 | 实例价格(¥/小时) | 估算月成本(24小时/天) |
---|---|---|---|---|
T4(16GB) | 2B~3B 模型(如 MiniCPM) | 中等,适合轻量对话/分类任务 | ~3~5 元/小时 | ¥2200~¥3600 |
A10(24GB) | 6B~7B 模型(ChatGLM3/Qwen) | 强,支持中大型模型服务 | ~8~12 元/小时 | ¥6000~¥9000 |
A100(40GB) | 13B+ / 多任务多并发 | 极强,适合大模型微调+推理 | ~25~40 元/小时 | ¥18000+ |
CPU(16核/32G) | 小模型 ONNX | 推理慢,延迟高 | ~0.5~1 元/小时 | ¥400~¥700 |
✅ 总结一句话:
模型微调项目落地,部署成本往往比训练更长久更烧钱!
公众号求关注:卷心菜ai