常见的薄膜材料之AlN薄膜

做射频滤波器,LED,激光二极管,mems压电的朋友,应该对于AlN一点也不陌生。几乎高端一点的器件都离不开AlN薄膜,AlN薄膜逐渐成为了微电子、光电子,光学领域的焦点。那么为什么大家都如此青睐AlN薄膜?

640 (6)

AlN有哪些优点?

AlN,即氮化铝,III-V族化合物。

宽带隙:

AlN的带隙约为6.1 - 6.2 eV,作为对比,硅的带隙宽度约为1.1 eV,远远低于AlN,这意味着AlN在常温下具有良好的绝缘性。材料的带隙宽度决定了其作为半导体的特性,包括其导电性、光学性质等。带隙指的是禁带,是一种能量范围,在这个范围内,电子不能存在于材料中,即无法导电。只有当外加能量足够时,电子才能从价带跃迁到导带,从而导致导电。

640 (3)

由于其具有宽带隙的特点,AlN可在深紫外区域发光,这在紫外发光二极管(UV LEDs)中应用广泛,AlN成为某些光电器件的理想基板材料。

压电特性

压电效应是某些材料在受到机械应力时产生电荷,或在施加电场时发生形状变化的特性。AlN是一个典型的压电材料,它在受到机械应力时会产生电压,反之亦然。

640

AlN是一种无铅压电材料,铅在在某些应用中是受到严格控制的,相对于含铅的压电材料(PZT),具有更大的优势。由于其较低的机械损耗,AlN具有高品质因子(Q值),Q值在高频的应用中十分重要,因此在在高频应用中特别受欢迎。

硬度高

具有很高的硬度。它的摩氏硬度大约为3-4,接近一些硬质材料如氮化硅(Si3N4),使其能够在高磨损环境中持续使用。

640 (4)

稳定性好

AlN的熔点大约为2200°C。在低于其熔点的温度下,AlN对大多数化学腐蚀剂和高温环境都很稳定。

高热导率:它具有高达 321 W/(m·K) 的高导热率。

AlN的结构特点

刚才我们介绍了AlN的外在品质,所谓‘相由心生’,那么AlN的“心”才是支撑它具有如此多优点的根因。

640 (2)

AlN是典型的六方密排结构。什么是六方密排结构?密排六方结构指原子在三维空间中以六边形密排的方式排列的晶体结构。在这种结构中,每个原子都被12个其他原子紧密包围。这种结构可以为材料提供高的硬度以及其他的优点。

AlN的掺杂

用于n型掺杂,掺钪(Sc)是AlN的一种比较常见的选择。而P型掺杂,目前实现起来还具有一定难度。Sc的原子大小和Al相近,可以有效地替代Al位置,而不会引入太多的晶体缺陷。通过掺杂Sc,可以调整AlN的能带结构,显著增强AlN的压电特性。

640 (1)

在整个AlN薄膜中均匀地分布Sc是一个挑战,而掺Sc的AlN后,其晶体缺陷概率大大提高,目前国内仅限于实验室研究,未见大规模量产的报道。 

原创不易,转载需联系开白名单并注明出自本处。 

卷积神经网络(CNN)是针对多维网格数据(如图像、视频)设计的深度学习架构,其结构灵感来源于生物视觉系统对信息的分层处理机制。该模型通过局部连接、参数共享、层级特征提取等策略,有效捕获数据中的空间模式。以下从结构特性、工作机制及应用维度展开说明: **1. 局部连接与卷积运算** 卷积层利用可学习的多维滤波器对输入进行扫描,每个滤波器仅作用于输入的一个有限邻域(称为感受野),通过线性加权与非线性变换提取局部特征。这种设计使网络能够聚焦于相邻像素间的关联性,从而识别如边缘走向、色彩渐变等基础视觉模式。 **2. 参数共享机制** 同一卷积核在输入数据的整个空间范围内保持参数不变,大幅降低模型复杂度。这种设计赋予模型对平移变换的适应性:无论目标特征出现在图像的任何区域,均可由相同核函数检测,体现了特征位置无关性的建模思想。 **3. 特征降维与空间鲁棒性** 池化层通过对局部区域进行聚合运算(如取最大值或均值)实现特征降维,在保留显著特征的同时提升模型对微小形变的容忍度。这种操作既减少了计算负荷,又增强了特征的几何不变性。 **4. 层级特征抽象体系** 深度CNN通过堆叠多个卷积-池化层构建特征提取金字塔。浅层网络捕获点线面等基础模式,中层网络组合形成纹理部件,深层网络则合成具有语义意义的对象轮廓。这种逐级递进的特征表达机制实现了从像素级信息到概念化表示的自动演进。 **5. 非线性扩展与泛化控制** 通过激活函数(如ReLU及其变体)引入非线性变换,使网络能够拟合复杂决策曲面。为防止过拟合,常采用权重归一化、随机神经元失活等技术约束模型容量,提升在未知数据上的表现稳定性。 **6. 典型应用场景** - 视觉内容分类:对图像中的主体进行类别判定 - 实例定位与识别:在复杂场景中标定特定目标的边界框及类别 - 像素级语义解析:对图像每个像素点进行语义标注 - 生物特征认证:基于面部特征的个体身份鉴别 - 医学图像判读:辅助病灶定位与病理分析 - 结构化文本处理:与循环神经网络结合处理序列标注任务 **7. 技术演进脉络** 早期理论雏形形成于1980年代,随着并行计算设备的发展与大规模标注数据的出现,先后涌现出LeNet、AlexNet、VGG、ResNet等里程碑式架构。现代研究聚焦于注意力分配、跨层连接、卷积分解等方向,持续推动模型性能边界。 卷积神经网络通过其特有的空间特征提取范式,建立了从原始信号到高级语义表达的映射通路,已成为处理几何结构数据的标准框架,在工业界与学术界均展现出重要价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值