[阅读笔记] Limited View Tomographic Reconstruction Using a Cascaded Residual Dense Spatial-Channel Atte

2021年发表在TMI上的一项工作,主要工作内容是数据保真层和双域。

现存问题和拟解决问题:

        在设计层析重建算法时,需要考虑两个主要因素,即重建质量和重建速度。目前,滤波反投影法(FBP)被广泛用作标准算法,因为它可以按照解析解快速地重建出高质量的图像。然而,FBP假定可以访问从对象的所有视图收集的测量结果。在LA和SV条件下使用FBP重建都是高度不适定的,产生的图像质量不理想,具有严重的伪影和高噪声。以往的有限视角层析重建算法可以分为两大类:基于模型的迭代重建算法和基于深度学习的重建算法。通过迭代最小化预定义的图像域正则化和采样正弦图的不一致性,MBIR可以生成高质量的图像。正则化的常见选择包括全变分、字典学习和非局部补丁。然而,MBIR方法计算量大且耗时,因为它们依赖于重复的正反投影。此外,仅基于先验假设使用正则化需要仔细的超参数调整,并且往往会对重建结果产生偏差,尤其是在欠采样率较高的情况下

        关于工作现状和不足,此处省略八百字。

        文章一句原话:虽然文献“A deep cascade of convolutional neural networks for dynamic MR image reconstruction”、“DuDoRNet: Learning a dual-domain recurrent network for fast MRI reconstruction with deep t1 prior”提出了一种用于磁共振成像快速重建的k空间数据一致性层,但在层析重建中尚未对投影数据一致性层进行系统的研究。这该是本文的idea来源。(每天一个水论文小技巧,下把我也去抄top上的MRI、PET重建方法套在CT上)

        为了克服这些局限性,作者提出了一种级联剩余密集空间通道注意网络(CasRedSCAN),用于有限视角条件下的断层重建。该文章工作中的CasRedSCAN由剩余密集空间通道注意网络(RedScan)和投影数据保真层(PDFL)组成,非常类似于MBIR方法的迭代过程,允许端到端的重建优化。具体而言,RedScan是每个级联块中用于对输入图像进行去混叠的主干网络。PDFL被级联到RedScan输出,以确保预测的投影数据保真度,同时允许梯度反向传播。使用AAPM低剂量CT Grand Challenges和DeepLesion DataSet对有限角度和备用视角扫描进行的实验表明,作者的CasRedSCAN可以提供高质量的有限视角断层重建。

方法:

整体思路:首先要看迭代重建解决的一个问题是\underset{I}{min}\left[\tau \(I)+\lambda\left \| G_uI-Q_u \right \|_n^n \right ],该过程是一个目标函数的优化过程,Gu是稀疏视图下或者有限视角下的前向投影因子,I为我们要重建出来的高质量CT图像,Qu是稀疏投影,也就是说迭代重建的目的是寻找一个Gu的反向操作,使得该反向操作能够将稀疏投影转化为高质量CT图像,并将高质量图像反推回去的投影数据能够与稀疏投影数据差异最小,以此实现数据保真。\tau \(I)在这里是一个正则化项。作者对迭代重建的质疑是在于,这种目标函数在训练过程中,极有可能追求一个较大的正则化项来减小保真项的影响,由于数据保真项越小越能保证其数据保真度,所以当数据保真项过大时,训练出一个较大的正则项仍然可以将目标函数拉到0附近,如果这种情况发生,数据无法保真。所以作者提出了另一种目标函数\underset{I}{min}\left[\left \| I-P\(I_u;\theta) \right \|_2^2+\lambda\left \| G_uI-Q_u \right \|_2^2 \right ],也就是在保持原有数据保真项不变的情况下,用\left \| I-P\(I_u;\theta) \right \|_2^2来代替原先的正则项,其中I为重建图像,P为网络,实现的功能是卷积网络去噪,让我看不太懂的是为什么这里要最小化迭代重建的结果与网络的重建结果。在这里我理解的是在原先,正则项可以为保真项的相反数,以此拉动整个目标函数趋于最小;更换掉正则项后,新的部分和保真项是同正的,不存在谁抵消谁,此时是一个严格的目标函数最小化过程,并且不会产生一个跳跃的数据保真项。

整个工作过程包括数据保真模块以及数据流

数据保真模块:,模块中的Ω指的是我们的稀疏投影集,如果我们网络重建的位置i的数据是原稀疏投影集中已经有的,则将网络重建的结果作放缩叠加在原有数据上,若重建的位置i是原稀疏投影集中没有的,则直接将重建的数据不作处理并放在对应位置上。

数据流(前后向传播)的算法和图示:

 

 

整体结构图(这里加入了一个小工作,空间通道注意力SCA):

实验的流程就是,用网络训练稀疏视图图像到全视图图像映射,然后实际重建过程中将网络输出转换到投影域进行数据保真操作。 

直到这里我发现我第一遍读这篇论文的时候犯了一个错误,他的目标函数设置为最小化投影差异和图像差异,仅仅是目标函数作理解用的,实际工作中并不是将这两项差异作为损失使用,实际工作仍然和通常的网络损失一样只有图像差异,这里并不体现数据保真。数据保真体现在突出原有稀疏投影数据集的作用,也就是数据保真模块的内容。

实验效果不错,原文有,不写了。

本文的数据一致性idea来源是一项核磁重建的科研工作,其中应用了k空间数据一致性,我对这个idea的理解就是,网络跑图像,图像转任意一个域,在该域作原始数据保真。

这篇文章精读了,很感兴趣,有一部分工作对未来我的论文是有很大帮助的。

论文:Sci-Hub | Limited View Tomographic Reconstruction using a Cascaded Residual Dense Spatial-Channel Attention Network with Projection Data Fidelity Layer. IEEE Transactions on Medical Imaging, 1–1 | 10.1109/tmi.2021.3066318

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值