10. 离散型随机变量

离散型随机变量

0-1 分布的定义

X X X 的概率分布律为

X 0 1 P 1 − p p \begin{array}{c|cc} X & 0& 1 \\ \hline P & 1-p & p \end{array} XP01p1p

其中 0 < p < 1 0 < p < 1 0<p<1,就称 X X X 服从参数为 p p p0-1 分布(或两点分布),记为 X ∼ 0 − 1 ( p ) X\sim 0-1(p) X01(p) X ∼ B ( 1 , p ) . X \sim B(1,p). XB(1,p).

其分布律还可以写为: P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1. P(X=k)=p^{k}(1-p)^{1-k},k=0,1. P(X=k)=pk(1p)1k,k=0,1.

(X服从退化分布:若 P ( X = c ) = 1. P(X=c)=1. P(X=c)=1.)


0-1 分布的应用:

对于一个随机实验,若它的样本空间只包含两个元素,即 S = { e 1 , e 2 } , S=\{e_1,e_2\}, S={e1,e2},我们总能在 S S S 上定义一个服从 (0-1) 分布的随机变量

X = { 0 , 当 e = e 1 ; 1 , 当 e = e 2 , X= \begin{cases} 0, 当 e=e_1; \\ 1, 当 e=e_2, \end{cases} X={0,e=e1;1,e=e2,

来描述这个随机实验的结果。


一个随机实验,设 A A A 是随机事件,且 P ( A ) = p ( 0 < p < 1 ) . P(A)=p(0<p<1). P(A)=p(0<p<1).仅考虑事件 A A A 发生与否,就可以定义一个服从参数为 p p p 的 0-1 分布的随机变量:

X = { 1 , 若 A 发 生 0 , 若 A 不 发 生 ( 即 A ‾ 发 生 ) , X= \begin{cases} 1, 若 A 发生\\ 0, 若 A 不发生(即\overline{A}发生), \end{cases} X={1,A0,AA

来描述这个随机实验的结果。

只有两个可能结果的试验,称为贝努利(Bernoulli)试验,故两点分布有时也称为贝努利分布。


例 1: 投掷一颗均匀的骰子,考虑 6 点是否出现,用 Y Y Y 表示该实验结果,求 Y Y Y 的概率分布律。

解: 由题意知,令

Y = { 1 , 抛 出 的 点 数 为 6 ; 0 , 抛 出 的 点 数 不 为 6. Y= \begin{cases} 1,抛出的点数为6;\\ 0,抛出的点数不为6. \end{cases} Y={1,60,6.

Y Y Y 的分布律为

Y 0 1 P 5 / 6 1 / 6 \begin{array}{c|cc} Y &0&1 \\ \hline P&5/6&1/6 \end{array} YP05/611/6

或写为 P ( X = k ) = ( 1 6 ) k ( 5 6 ) 1 − k , k = 0 , 1. P(X=k)=(\frac{1}{6})^{k}(\frac{5}{6})^{1-k},k=0,1. P(X=k)=(61)k(65)1k,k=0,1. Y ∼ 0 − 1 ( 1 6 ) Y\sim 0-1(\frac{1}{6}) Y01(61)

事实上 Y Y Y 也可以看做是掷一次骰子,点数为 6 的次数。


n n n 重贝努利试验: 设试验 E E E 只有两个可能的结果: A A A A ‾ \overline{A} A,且 P ( A ) = p , 0 < p < 1 P(A)=p,0<p<1 P(A)=p,0<p<1.将 E E E 独立重复地进行 n n n 次,则称这一串重复的独立试验为 n n n 重贝努利试验

n n n 重贝努利试验 试验结果的次数统计规律:

A A A 为结果, X X X 表示 n n n 重贝努利试验 中结果 A A A 发生的次数

X X X 的可能取值为 0 , 1 , . . . , n 0,1,...,n 0,1,...,n,且 P { X = k } = C n k p k ( 1 − p ) n − k P\{X=k\}=C_{n}^{k}p^{k}(1-p)^{n-k} P{X=k}=Cnkpk(1p)nk


二项分布的定义

X X X 的概率分布律为

P { X = k } = C n k p k ( 1 − p ) n − k , k = 0 , 1 , . . . , n P\{X=k\}=C_{n}^{k}p^{k}(1-p)^{n-k},k=0,1,...,n P{X=k}=Cnkpk(1p)nk,k=0,1,...,n

其中 n ≥ 1 , 0 < p < 1 n\geq 1,0<p<1 n1,0<p<1,就称 X X X 服从参数为 n , p n,p n,p二项分布(Binomial),记为 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)


泊松分布的定义

X X X 的概率分布律为

P ( X = k ) = λ k e − λ k ! , k = 0 , 1 , 2 , . . . , P(X=k)=\frac{\lambda^{k}e^{-\lambda}}{k!},k=0,1,2,..., P(X=k)=k!λkeλ,k=0,1,2,...,
其中 λ > 0 \lambda >0 λ>0,就称 X X X 服从参数为 λ \lambda λ泊松分布(Poisson),记为 X ∼ π ( λ ) 或 X ∼ P ( λ ) X\sim \pi(\lambda) 或 X\sim P(\lambda) Xπ(λ)XP(λ).


二项分布与泊松分布有以下近似公式:

n > 10 , p < 0.1 n>10, p<0.1 n>10,p<0.1 时,

C n k p k ( 1 − p ) n − k ≈ λ k e − λ k ! , 其 中 λ = n p . C_{n}^{k}p^{k}(1-p)^{n-k}\approx \frac{\lambda^{k}e^{-\lambda}}{k!},其中 \lambda =np. Cnkpk(1p)nkk!λkeλλ=np.

即当 n > 10 , p < 0.1 n>10,p<0.1 n>10,p<0.1 时,二项分布 B ( n , p ) B(n,p) B(n,p) 可以用泊松分布 π ( n p ) \pi(np) π(np) 来近似。


例 2: 某地区一个月内每 200 个成年人中有 1 个会患上某种疾病,设各人是否患病相互独立。若该地区一社区有 1000 个成年人,求某月内该社区至少有 3 人患病的概率。

解: 设该社区 1000 人种有 X X X 个人患病,则 X ∼ B ( 1000 , p ) X\sim B(1000,p) XB(1000,p),其中 p = 1 / 200 p=1/200 p=1/200.

P ( X ≥ 3 ) = 1 − P ( X = 0 ) − P ( X = 1 ) − P ( X = 2 ) P(X\geq 3)=1-P(X=0)-P(X=1)-P(X=2) P(X3)=1P(X=0)P(X=1)P(X=2)

= 1 − ( 199 200 ) 1000 − C 1000 1 ( 1 200 ) 1 ( 199 200 ) 999 − C 1000 2 ( 1 200 ) 2 ( 199 200 ) 998 = 0.8760 =1-(\frac{199}{200})^{1000} - C_{1000}^{1}(\frac{1}{200})^{1}(\frac{199}{200})^{999} - C_{1000}^{2}(\frac{1}{200})^{2}(\frac{199}{200})^{998}=0.8760 =1(200199)1000C10001(2001)1(200199)999C10002(2001)2(200199)998=0.8760

利用泊松分布进行近似计算,取 λ = 1000 × 1 200 = 5 , \lambda=1000\times \frac{1}{200}=5, λ=1000×2001=5,

P ( X ≥ 3 ) = 1 − P ( X = 0 ) − P ( X = 1 ) − P ( X = 2 ) P(X\geq 3)=1-P(X=0)-P(X=1)-P(X=2) P(X3)=1P(X=0)P(X=1)P(X=2)

≈ 1 − e − 5 0 ! − 5 e − 5 1 ! − 5 2 e − 5 2 ! = 0.8753. \approx 1-\frac{e^{-5}}{0!}-\frac{5e^{-5}}{1!}-\frac{5^{2}e^{-5}}{2!}=0.8753. 10!e51!5e52!52e5=0.8753.

这里由二项分布计算的结果,与泊松分布近似计算的结果非常相近。


几何分布的定义

X X X 的概率分布律为

P ( X = k ) = p ( 1 − p ) k − 1 , k = 1 , 2 , 3 , . . . , P(X=k)=p(1-p)^{k-1},k=1,2,3,..., P(X=k)=p(1p)k1,k=1,2,3,...,

其中 0 < p < 1 0<p<1 0<p<1,称 X X X 服从参数为 p p p几何分布(Geometric),记为 X ∼ G e o m ( p ) . X\sim Geom(p). XGeom(p).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值