llama2.c推理

文章讨论了如何通过矩阵计算求解模型图中下三角矩阵的元素,区分了多头注意力机制两种理解,重点介绍了kv-cache技术,它通过缓存注意力结果并仅处理当前时间步的查询,显著减少了计算量。作者使用基础的矩阵操作而非库函数来实现高效计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模型图
在这里插入图片描述

代码及分析

不需要考虑任何mask问题,直接通过矩阵计算求出下三角矩阵每个元素的值即可,不需要额外添加mask之类的。

temperature=0(确定性)的时候,模型推理每次都取概率最大的(从而导致同样的输入prompt会有完全相同的输出);否则根据概率分布来挑选,即有一定概率输出和前一个字不搭配的字

多头注意力机制有两种理解,实现和效果也不同,一种是将embedding维切分成head_num个m=embedding/head_num维,产生m组不同的qkv(维度也不再是embedding)分别对切分后的m组向量做注意力(一一对应)最后拼起来还原为embedding维,另一种理解是,不需要对embedding切分,而是用正常embedding维的大小的qkv分别做注意力,最后也是拼接起来,这时候embedding维拓展成head_num*embedding维,只需要再用一个矩阵线性变换为embedding维即可。
本文的代码基于第一种理解

kv-cache
主要思想就是通过缓存之前的注意力结果以及只挑当前时间步的Q来计算注意力减少计算量。每个时间步t只需要算当前词Wt对W1~t的注意力,因此只需要用当前词的Qt和K1~t以及V1~t即可求出最终的下一个向量的表示,此时再拼接到之前W1~t-1的向量表示即可
在这里插入图片描述

作者也没使用任何矩阵运算库,直接就是根据矩阵的定义行列向量点乘求和求出且只考虑矩阵和向量之间的矩阵乘法

### llama.cpp中的异步推理 llama.cpp作为一个高度优化的C/C++实现,专注于本地LLM推理性能的优化[^3]。为了提升用户体验并充分利用计算资源,在某些应用场景下引入了异步推理机制。 #### 方法概述 在llama.cpp中实现异步推理主要依赖于多线程编程以及事件驱动架构来管理任务队列和回调函数。具体来说: - **创建独立的工作线程池**:用于执行实际的模型预测工作; - **设计生产者消费者模式的任务调度器**:负责接收来自前端界面或其他组件提交的新请求,并将其放入待处理队列等待被分配给空闲的工作线程; - **利用条件变量或信号量同步机制**:确保主线程能够及时得知子线程完成情况从而更新UI显示或将结果返回给调用方; #### 示例代码 下面给出一段简单的伪代码示例,展示了如何在一个基于llama.cpp的应用程序里设置基本的异步推理流程(注意这只是一个概念性的例子,可能需要根据实际情况调整细节): ```c++ #include <thread> #include <queue> #include <mutex> #include <condition_variable> // 假设这是我们要使用的模型类 class Model { public: void predict(const std::string& input, std::function<void(std::string)> callback); }; std::queue<std::pair<std::string, std::function<void(std::string)>> taskQueue; std::mutex mtx; std::condition_variable cv; void worker_thread(Model* model) { while (true) { std::unique_lock<std::mutex> lock(mtx); cv.wait(lock, [] {return !taskQueue.empty(); }); auto [input, cb] = taskQueue.front(); taskQueue.pop(); lock.unlock(); // 执行预测操作并将结果传递回给callback model->predict(input, cb); } } int main() { int num_threads = 4; // 可配置的工作线程数量 Model my_model; std::vector<std::thread> threads; for(int i=0;i<num_threads;++i){ threads.emplace_back(worker_thread,&my_model); } // 提交新任务到队列中... return 0; } ``` 此段代码片段说明了一个典型的异步推理框架的设计思路,其中包含了任务分发、并发控制等方面的内容。需要注意的是,上述代码仅为示意目的编写,并未考虑所有边界条件及异常处理逻辑等问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值