目录
一 非常返状态的定义
设I={1、2、3、4},转移概率如图1所示,可以计算出状态2和状态3有相同的周期d=2。但由状态3出发经两步必定返回到3,而状态2则不然,当状态2转移到状态3后,便不可以返回到状态2,因此为了区分着两种状态,引入了常返性概念。
记 (1)
显然由马氏链性质于齐次性上式右方与m无关。它表示质点由状态i出发,经n步首次到达状态j的概率,也称为首中概率(或首达概率)。记
(2)
它表示指点由状态i出发,经有限步终于到达状态j的概率。
图1 马尔可夫链
上图1中的状态3经有限步可以返回到状态3,因此该状态3称为常返状态;而状态2在有限步中,如果转移到了状态3,则便无法返回到自身的状态,因此状态2成为非常返状态。
定义:如果,则称状态i为常返的;如果
,则称状态i为非常返的。
因此,若状态 i 为非常返态,则由i出发将以正概率永远不再返回到 i ;若 i 为常返时,不会出现上述情况。对于常返态 i ,由定义知构成一概率分布,此分布的期望值为:
(3)
表示由状态i出发再返回到i的平均返回时间。
二 常返性的判别及其性质
该小节中讨论如何用(表示质点从状态i经过n步转移后到达状态j的概率)判别常返状态及其性质。这里先引入母函数。设
为实数列,考虑其母函数
(4)
显然,如有界,则A(s)对一切|s|<1收敛。进而,若与的母函数分别为A(s)和B(s),且对一切|s|<1收敛,则
与
的卷积
(5)
的母函数为。
定理:状态i常返的充要条件为 (6)
如i 非常返,则 (7)
证明:规定。由定理4.4(下面给出该定理)知,
(8)
两边乘以,并对
求和,若记
与
的母函数分别为P(s)与F(s),与(5)式比较得
(9)
注意到当时,,因此
(10)
显然对任意正整数N都有
(11)
且当时,P(s)不减,故在上式中如先令
,再令
,我们有
(12)
同理可得
(13)
令(10)式两边中的,由(11),(12)式立得定理。
定理:当i常返时,返回i的此次数是无限多次;当i为非常返时,返回i的次数只能又有限多次。
三 零常返态的例子
因为零常返态中,,且
。所以可以用发散级数来寻找零常返态的例子:如
为发散级数。可以令一个马尔可夫链的周期d = 3^n,该状态转移图如下图所示:
图2 零常返的状态转移图
可以观察到,状态1中:,
,
,
,... ,
,
,
,...
因此状态1的首达概率为:,故状态1为常返态。
可知 为发散级数,故状态1为零常返态。
定理4.4 对任意状态i,j及有
参考文献:刘次华, 随机过程(第五版),华中科技大学出版社, 中国武汉, 2014