目标检测之Fast-RCNN

论文链接: https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf.

Fast R-CNN是在 R-CNN的基础上进行的改进,大致框架是一致的。总体而言,Fast R-CNN相对于R-CNN而言,主要提出了三个改进

  1. 提出了RoIPooling,避免了对提取的region proposals进行缩放到224x224,然后经过pre-trained CNN进行检测的步骤,加速了整个网络的learning与inference过程,这个是巨大的改进,并且RoIPooling是可导的,因此使得整个网络可以实现end-to-end learning,这个可以认为是Fast R-CNN相对于R-CNN最大的改进之处。

  2. 采用了Multi-task loss进行边框回归,这个在R-CNN中也有这方面的实验。

  3. 利用了截断的奇异值分解(Truncated SVD for faster detection)加速了网络。

Fast-RCNN网络架构
在这里插入图片描述
整体流程如图:
在这里插入图片描述
首先是读入一张图像,这里有两个分支,一路送入FCN,输出 feature maps,另一路通过selective search提取region proposals。提取的每个region proposal 都有一个对应的Ground-truth Bounding Box和Ground-truth class label。其中每个region proposals用四元数组进行定义,即(r, c, h, w),即窗口的左上行列坐标与高和宽。值得注意的是,这里的坐标均是对应原图像的,而不是输出的feature maps。因此,还需要把原图像的坐标系映射到feature maps上。接下来就是把region proposal窗口框起来的那部分feature maps输入到RoIPooling(R-CNN是将其缩放到224x224,然后送入经过Fine-tuning的网络模型),得到固定大小的输出maps。

然后要说的就是Multi-task loss了。由图1或图2可知,网络的最终输出是针对每一个region proposal的。对于每一个region proposal会输出一个类别标签,就是这个region proposal框内框住的目标是属于什么类别,同时对每一个region proposal还进行边框回归,输出一个四元组的坐标,即,而其对应的ground-truth bounding box为,在进行边框回归的时候,利用robust L1 loss计算回归损失。这里无需赘言,参见Fast R-CNN论文 “2.3. Fine-tuning for detection”。

下面讲一下Mini-batch sampling。在进行Fine-tuning的时候,每次读入两张图像,然后在每张图像上均匀选取64个 RoIs,两张图像就是128个RoIs。也就是说,每次迭代的是RoI。这里选取的RoI不是随便选取的,而是RoI与Ground-truth bounding box的IoU≥0.5作为正样本的,也就是此时的样本有一个对应的Ground-truth bounding box与Ground-truth class label,其它的就作为背景样本。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值