常见函数求导过程
前言
看了之前的导数,有了一个结论,一般导函数的表示如下:
f ′ ( t ) = lim Δ t → 0 f ( t + Δ t ) − f ( t ) Δ t f'(t) = \lim\limits_{Δt\to 0}\frac{f(t + Δt) - f(t)}{ Δt} f′(t)=Δt→0limΔtf(t+Δt)−f(t)
我们常用还是喜欢把自变量变成x
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x) = \lim\limits_{Δx\to 0}\frac{f(x + Δx) - f(x)}{ Δx} f′(x)=Δx→0limΔxf(x+Δx)−f(x) ①
一次函数
一次函数,如
f
(
x
)
=
2
x
+
1
f(x) = 2x + 1
f(x)=2x+1
那我们该如何对其进行求导呢,可以直接代入①式
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x) = \lim\limits_{Δx\to 0}\frac{f(x + Δx) - f(x)}{ Δx} f′(x)=Δx→0limΔxf(x+Δx)−f(x)
= lim Δ x → 0 2 ( x + Δ x ) + 1 − ( 2 x + 1 ) Δ x \lim\limits_{Δx\to 0}\frac{2(x+Δx) + 1 - (2x + 1)}{ Δx} Δx→0limΔx2(x+Δx)+1−(2x+1)
= lim Δ x → 0 2 Δ x Δ x \lim\limits_{Δx\to 0}\frac{2Δx}{ Δx} Δx→0limΔx2Δx
= 2
可以看出,这里的
f
(
x
)
=
2
x
+
1
f(x) = 2x + 1
f(x)=2x+1的导函数是一个常量
f
′
(
x
)
=
2
f'(x) = 2
f′(x)=2
由
f
(
x
)
=
2
x
+
1
f(x) = 2x + 1
f(x)=2x+1的函数图形其实也能够看出来,它的变化率【斜率】一直没有发生变化
二次函数
一次函数,如
f
(
x
)
=
x
2
+
1
f(x) = x^2 + 1
f(x)=x2+1
我们继续使用①式代入
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x) = \lim\limits_{Δx\to 0}\frac{f(x + Δx) - f(x)}{ Δx} f′(x)=Δx→0limΔxf(x+Δx)−f(x)
= lim Δ x → 0 ( x + Δ x ) 2 + 1 − ( x 2 + 1 ) Δ x \lim\limits_{Δx\to 0}\frac{(x+Δx)^2 + 1 - (x^2+1)}{ Δx} Δx→0limΔx(x+Δx)2+1−(x2+1)
= lim Δ x → 0 2 x Δ x + Δ x 2 Δ x \lim\limits_{Δx\to 0}\frac{2xΔx+Δx^2}{ Δx} Δx→0limΔx2xΔx+Δx2
= lim Δ x → 0 2 x + Δ x \lim\limits_{Δx\to 0}2x+Δx Δx→0lim2x+Δx
由于 Δ x Δx Δx是趋于0的,所以最终结果如下
f ′ ( x ) = 2 x f'(x) = 2x f′(x)=2x
我们继续看二次函数的图像,其实也能够看出,它的变化率是先减后增,其实也对应着我们的导函数
f
′
(
x
)
=
2
x
f'(x) = 2x
f′(x)=2x ,是先负后正
再回到我们的①式,
f ′ ( x ) = lim Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x) = \lim\limits_{Δx\to 0}\frac{f(x + Δx) - f(x)}{ Δx} f′(x)=Δx→0limΔxf(x+Δx)−f(x) ①
可以看出如下结果:
当分数上下正负同号的时候,导数为正,意思就是
x
x
x增加的时候,函数增加,函数式递增
当分数上下正负不同号的时候,导数为负,意思就是
x
x
x增加的时候,函数反而减小,函数式递减
当分子=0,导数=0,意思就是
x
x
x增加的时候,函数不发生变化
结论:
①导数为负,函数递减
②导数为正,函数递增
③导数为0,函数不变化
还有其他的函数求导,例如 e x , x a , a x , l i n x s i n x c o s x e^x,x^a , a^x,linx sinx cosx ex,xa,ax,linxsinxcosx等要麻烦一些,后面推导