多因子混频数据抽样预测 MIDAS(Muti-Factor Mixed Data Sampling)

多元MIDAS(Muti-Factor Mixed Data Sampling)模型

模型介绍

多元MIDAS(Mixed Data Sampling)模型是一种经济计量学模型,用于处理不同频率的数据。MIDAS模型的主要特点是能够结合高频率和低频率的数据,以预测低频率的经济变量。
但开源的代码都是用的单一高频去预测低频数据,于是我做了一个多元的版本,且可以比较方便的适用于券商常用的wind、ifind等数据库直接导出来的表格。

以下是多元MIDAS模型的一些关键特点和应用:

  1. 不同频率的数据结合:MIDAS模型的主要优势是能够结合不同频率的数据,例如,可以使用日数据来预测月数据或使用月数据来预测季度数据。
  2. 灵活的参数化:MIDAS模型使用了一种特殊的权重函数,允许数据在不同的时间点有不同的影响。这种权重函数可以是线性的、指数的或其他形式的,取决于模型的具体应用。
  3. 预测能力:多元MIDAS模型在预测经济时间序列方面表现出色,特别是当高频率数据包含有关低频率变量未来走势的有用信息时。
  4. 简化的估计过程:尽管MIDAS模型结合了不同频率的数据,但其估计过程相对简单。这是因为模型将高频率数据的影响聚合到低频率的观测中,从而避免了处理大量高频率数据的复杂性。
  5. 应用广泛:MIDAS模型在宏观经济学、金融和其他领域都有应用。例如,它可以用于预测GDP、通货膨胀率、股票回报率等。
  6. 模型扩展:除了基本的MIDAS模型外,还有许多扩展版本,如非线性MIDAS、因子MIDAS等,这些模型为处理更复杂的数据结构和关系提供了更多的灵活性。

总的来说,多元MIDAS模型提供了一种有效的方法,将不同频率的数据结合起来,以预测低频率的经济变量。这种方法在处理实际经济和金融数据时特别有用,因为这些数据通常以不同的频率出现。

个人理解
MIDAS模型就是分为降频降维两个部分

  1. 降频:利用了滞后因子多项式,例如almon多项式、beta多项式、指数almon多项式等方法
  2. 降维:利用了PCA\动态因子\VAR等方法

然后多因子模型的建立就是将降频和降维的结果进行组合并使用多元线性模型进行参数估计

其中关键的点就是同时进行降维、降频、多元线性模型中的参数估计

具体的内容可以看国泰君安的《金融工程专题_MIDAS:混频数据预测通用框架

实现效果

import datetime
import numpy as np
import pandas as pd
from tqdm import tqdm

#引入写的包
from midas.mix import mix_freq3
from midas.adl import estimate3, forcast3,analyse3
from midas.weights import polynomial_weights

然后数据来源于ifind,从指标库里直接导出来,把后面那个”来源:同花顺“删了,改成csv格式就行了

#读取数据
df = pd.read_csv('../data/CPI当月同比等_20230723_220851.csv', index_col=0, parse_dates=True,encoding='gbk')
#对df进行标准化处理,注意有的地方为nan,方便后续做归因分析。
df = df.apply(lambda x: (x - np.mean(x)) / (np.max(x) - np.min(x)))#若需要得到准确的预测值,这一步需要去掉

#检查数据
df.tail(30)

在这里插入图片描述

#划分训练集与测试集

"""
df: 输入的 DataFrame 数据。第一列是低频数据、其他是高频数据。直接从ifind里面读取数据,然后把末尾的来源去掉。
xlag_list: 一个列表,表示用于预测的不同滞后。第一列一定是1,然后后面的列可以自己定义,比如第一个列为月,第二个列为日,第三个列为周,那么就是[1,21,4]
ylag: 低频数据的滞后期数。用于存在自回归现象,但是不建议开启。
test_start_position_rate: 测试数据开始的位置。如果是小数,比如0.8,那么就是从前面开始的80%作为训练集,后面的20%进行预测。如果是整数,那就是指定预测多少期低频数据。
"""
lf_data_train,lf_data_lag_train,x_train,lf_data_test,lf_data_lag_test,x_test = mix_freq3(df, xlag_list = [1,21,21,4,21],ylag = 0, test_start_position_rate = 0.8)



#参数估计
"""
lf_data: 低频数据。
x_train: 高频数据的训练集。
lf_data_lag: 低频数据的滞后值。
"""
opt_res = estimate3(lf_data_train,x_train,lf_data_lag_train)
#预测
"""
x_test: 高频数据的测试集。
lf_data_lag: 低频数据的滞后值。
opt_res: 优化结果。
"""
pre_yl = forcast3(x_test,lf_data_lag_test,opt_res,lf_data_test)
analyse3(pre_yl,lf_data_test)

在这里插入图片描述
根据趋势线,我们选择相信cpi将会在6月有一个下降的趋势

接下来我们生成滚动预测的趋势预测图

predict_res = pd.Series([])
for i in tqdm(range(1,80)):#建议设置滚动时,数量设置为为数据比较完整部分(本例为80),因为可能有的高频数据不完整,会没有预测结果
    lf_data_train,lf_data_lag_train,x_train,lf_data_test,lf_data_lag_test,x_test = mix_freq3(df, xlag_list = [1,21,21,4,21],ylag = 0, test_start_position_rate = i)
    opt_res = estimate3(lf_data_train,x_train,lf_data_lag_train)
    predict_tmp = forcast3(x_test,lf_data_lag_test,opt_res,lf_data_test)
    predict_res = predict_res.combine_first(predict_tmp)

#画出predict_res与real_res的对比图
analyse3(predict_res,df.iloc[:,0].dropna())

在这里插入图片描述
发现在21年年初,预测与现实的趋势出现了较大的背离,在知道cpi与猪肉相关性很大的情况下,我们选择画出cpi和猪肉的折线图进一步探究

df[['CPI','猪肉']].plot(figsize=(15,4), style=['o','--'])

在这里插入图片描述
可以看出确实是在21年猪肉价格和cpi的趋势出现了较大背离,
而且这种背离在历史上也是比较少见的,
所以可以认为这次猪肉价格的上涨是由于猪肉供应量的减少,
而不是由于通货膨胀导致的。

具体实现的midas包没放出来,因为是一个包,不方便上传。
要是想一起讨论具体细节和其他量化模型的朋友可以联系我v151、1750、5552

<think>好的,用户想了解金融数据多模态频融合的技术和方法,尤其是具体的实现。首先,我需要明确什么是多模态频数据。金融数据通常包括不同频率的数据,比如高频的交易数据、日度的市场数据、季度的财务报表,还有新闻、社交媒体这样的非结构化数据。频可能指的是将这些不同频率的数据融合在一起进行分析。 用户提到的引用里提到了Datafeed Toolbox,可以获取实时数据流,还有用Transformer模型做股票预测。这说明可能需要结合时间序列分析和深度学习方法。首先,我需要考虑如何处理不同频率的数据,比如将低频数据通过插值或聚合方法对齐到高频,或者使用频模型,比如MIDASMixed Data Sampling)模型。 然后是多模态的问题,除了结构化数据,还有文本、新闻等非结构化数据。这部分可能需要自然语言处理技术,比如情感分析,提取特征后再与其他数据融合。引用[2]提到Transformer的自注意力机制,可能可以用来处理不同模态数据的长程依赖。 接下来需要思考技术实现步骤:数据预处理(对齐、标准化)、特征提取(尤其是文本数据)、模型架构设计(如多模态Transformer)、训练策略(如何处理不同数据频率)、评估方法等。 可能的问题点包括数据频率不一致导致的模型输入问题,如何有效融合不同模态的特征,以及计算效率的问题。例如,使用MIDAS回归可以将低频变量引入高频模型,或者使用神经网络自动学习不同频率的特征表示。 实现工具方面,用户提到了Matlab,但Python在深度学习方面更常用,比如TensorFlow或PyTorch。不过结合引用中的Datafeed Toolbox,可能在Matlab中也有相应的实现方式,需要说明。 还需要考虑实际应用中的挑战,比如数据噪声、非结构化数据处理的有效性、模型过拟合等。可能需要提到数据增强、正则化方法,或者使用预训练模型处理文本数据。 总结技术方法时,要分步骤说明:数据预处理、特征工程、模型设计、训练优化、评估验证。每个部分的具体方法,比如对齐数据用插值,特征提取用BERT或TF-IDF,模型用多模态Transformer结合注意力机制等。 最后,生成相关问题时要覆盖技术细节、工具实现、挑战和应用场景,确保用户能进一步探索。</think>### 金融数据多模态频融合技术及实现 金融数据多模态频融合技术旨在整合不同频率(如高频交易数据、低频财务报表)和不同模态(如数值、文本、图像)的金融数据,以提升预测模型的信息完备性和精度。以下是关键技术及实现方法: --- #### 一、技术核心 1. **频数据处理** - **MIDASMixed Data Sampling)模型**:通过多项式权重函数将低频变量(如季度GDP)映射到高频框架(如日度股票价格),公式为: $$ y_t = \beta_0 + \sum_{k=1}^K \beta_k \sum_{i=0}^m \theta_i x_{t-i}^{(k)} + \epsilon_t $$ 其中,$x_{t-i}^{(k)}$表示第$k$个低频变量的滞后项,$\theta_i$为权重参数[^1]。 - **动态时间规整(DTW)**:对齐不同频率时间序列的时序模式。 2. **多模态特征融合** - **数值与文本融合**: - 使用NLP技术(如BERT、TF-IDF)提取新闻、社交媒体中的情感特征。 - 通过注意力机制(如Transformer)动态加权数值与文本特征的贡献。 - **跨模态对齐**:利用对比学习(Contrastive Learning)将不同模态映射到统一语义空间。 --- #### 二、实现步骤(以股票预测为例) 1. **数据预处理** - **频率对齐**:低频数据(如财务报表)通过插值或聚合转换为高频序列。 - **标准化**:对数值数据使用Z-Score标准化,文本数据通过词向量编码。 2. **特征提取** - **数值特征**:技术指标(如MACD、RSI)、市场波动率。 - **文本特征**:基于Transformer的新闻情感分析模型(示例代码): ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') inputs = tokenizer("Market shows bullish trend", return_tensors="pt") outputs = model(**inputs) text_features = outputs.last_hidden_state.mean(dim=1) # 提取句向量 ``` 3. **模型架构** - **多模态Transformer**: - 输入层:数值序列与文本特征拼接。 - 自注意力层:捕获跨模态依赖关系。 - 输出层:回归预测股价或分类市场趋势。 4. **训练与优化** - **损失函数**:结合均方误差(数值预测)和交叉熵(分类任务)。 - **正则化**:Dropout和权重衰减防止过拟合。 --- #### 三、挑战与解决方案 1. **数据异构性** - **解决方案**:设计模态特定的编码器(如CNN处理图像,LSTM处理文本)。 2. **计算复杂度** - **解决方案**:使用合精度训练或分布式计算框架(如Horovod)。 --- #### 四、应用场景 - **高频交易策略**:融合订单流数据与新闻事件。 - **风险管理**:整合宏观经济低频指标与市场高频波动数据[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值