深度学习入门-误差反向传播法

Affine层

正向传播的时候,偏置会被加到每一个数据(第1个、第2个)上。因此,反向传播时:

各个数据的反向传播的值需要汇总为偏置的元素。–?

import numpy as np
class Affine:
    def __init__(self, W, b):
        self.w = W
        self.b = b
        self.x = None
        self.dW = None
        self.db = None
    def forward(self, x):
        self.x = x
        out = np.dot(x, self.W) + self.b
        return out
    def backward(self, dout):
        dx = np.dot(dout, self.W.T)#转置
        self.dW = np.dot(self.x.T, dout)#矩阵乘积
        self.dB = np.sum(dout, axis=0) #对0轴方向上的元素进行求和
        
        return dx
       

softmax层

softmax层将输入值正规化(将输出值的和调整为1)之后再输出。使用交叉熵误差作为softmax的损失函数

softmax层的反向传播得到(y1-t1,y2-t2,y3-t3)y为输出,t为监督数据

神经网络的学习的目的就是通过调整权重参数,使神经网络的输出接近正确的标签

神经网络:

神经网络中有合适的权重和偏置。调整权重和偏置以便拟合训练数据的过程称为学习,有以下几个步骤:

1.从训练数据中随机选择一部分数据
2.计算损失函数关于各个权重参数的梯度
3.将权重参数沿梯度方向进行微小的更新
4.重复步骤1、2、3

误差反向传播法的神经网络实现:

import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
from common.layers import *
from common.gradient import numerical_gradient
from collections import OrderedDict


class TwoLayerNet:

    #输入层的神经元数、隐藏层的神经元数、输出层的神经元数、初始化权重时的高斯分布的规模
    def __init__(self, input_size, hidden_size, output_size, weight_init_std = 0.01): 

        # 初始化权重 param保存神经网络的参数的字典型变量
        self.params = {}
        self.params['W1'] = weight_init_std * np.random.randn(input_size, hidden_size)
        self.params['b1'] = np.zeros(hidden_size)
        self.params['W2'] = weight_init_std * np.random.randn(hidden_size, output_size) 
        self.params['b2'] = np.zeros(output_size)

        # 生成层 保存神经网络的层的有序字典型变量
        self.layers = OrderedDict()
        self.layers['Affine1'] = Affine(self.params['W1'], self.params['b1'])
        self.layers['Relu1'] = Relu()
        self.layers['Affine2'] = Affine(self.params['W2'], self.params['b2'])

        self.lastLayer = SoftmaxWithLoss()
    #x是图像数据
    def predict(self, x):
        for layer in self.layers.values():
            x = layer.forward(x)
        
        return x
        
    # x:输入数据, t:监督数据
    def loss(self, x, t):
        y = self.predict(x)
        return self.lastLayer.forward(y, t)
    
    def accuracy(self, x, t):
        y = self.predict(x)
        y = np.argmax(y, axis=1)
        if t.ndim != 1 : t = np.argmax(t, axis=1)
        
        accuracy = np.sum(y == t) / float(x.shape[0])
        return accuracy
        
    # x:输入数据, t:监督数据
    def numerical_gradient(self, x, t):
        loss_W = lambda W: self.loss(x, t)
        
        grads = {}
        grads['W1'] = numerical_gradient(loss_W, self.params['W1'])
        grads['b1'] = numerical_gradient(loss_W, self.params['b1'])
        grads['W2'] = numerical_gradient(loss_W, self.params['W2'])
        grads['b2'] = numerical_gradient(loss_W, self.params['b2'])
        
        return grads
        #通过误差反向传播法计算关于权重参数的梯度
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.lastLayer.backward(dout)
        
        layers = list(self.layers.values())
        layers.reverse()
        for layer in layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        grads['W1'], grads['b1'] = self.layers['Affine1'].dW, self.layers['Affine1'].db
        grads['W2'], grads['b2'] = self.layers['Affine2'].dW, self.layers['Affine2'].db

        return grads

误差反向传播法的梯度确认
求梯度有两种方法:数值微分和误差反向传播法。
数值微分法优点:实现简单,不太容易出错,而误差反向传播法的实现很复杂,容易出错。
所以经常比较数值微分的结果和误差反向传播法的结果,以确认误差反向传播法求出的结果是否一致–梯度确认

#求各个权重的绝对误差的平均值
for key in grad_numerical.keys():
    diff = np.average( np.abs(grad_backprop[key] - grad_numerical[key]) )
    print(key + ":" + str(diff))
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qtayu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值