lim x → 0 tan x x \lim_{x\rightarrow0} \frac{\tan x}{x} limx→0xtanx
遇到这种带分式的,又有三角函数的,要立马想到第一重要极限,即 lim x → 0 sin x x \lim_{x\rightarrow0} \frac{\sin x}{x} limx→0xsinx=1。而题意的分子上却是 tan x \tan x tanx,既然是 tan x \tan x tanx,我们就把它变成 sin x cos x \frac{\sin x}{\cos x} cosxsinx,所以是 lim x → 0 sin x cos x x \lim_{x\rightarrow0} \frac{\frac{\sin x}{\cos x}}{x} limx→0xcosxsinx,除以一个数,等于乘这个数的倒数,所以 lim x → 0 sin x cos x ∗ 1 x \lim_{x\rightarrow0} \frac{\sin x}{\cos x} * \frac{1}{x} limx→0cosxsinx∗x1,为了符合第一重要极限,所以等价于 lim x → 0 sin x x ∗ 1 cos x \lim_{x\rightarrow0} \frac{\sin x}{x} * \frac{1}{\cos x} limx→0xsinx∗cosx1,这个不难理解吧,然后下一步该怎么做呢?根据极限的四则运算,等于 lim x → 0 sin x x ∗ lim x → 0 1 cos x \lim_{x\rightarrow0} \frac{\sin x}{x} * \lim_{x\rightarrow0} \frac{1}{\cos x} limx→0xsinx∗limx→0cosx1,接下来就开始真正的运算了,第一个等于1,不用说,根据第一重要极限公式,第二个当 x x x趋向于0的时候, cos x \cos x cosx应该趋向于1,因为 cos 0 \cos 0 cos0等于1嘛,所以1分之1等于1,那么两个1相乘,结果还是1,所以答案等于1。
lim x → 0 1 − cos x x 2 \lim_{x\rightarrow0} \frac{1-\cos x}{x^2} limx→0x21−cosx
一样,我们必须想办法把它化成
lim
x
→
0
sin
x
x
\lim_{x\rightarrow0} \frac{\sin x}{x}
limx→0xsinx=1,那怎么化呢?看题意,分子是
1
−
cos
x
1-\cos x
1−cosx,那么根据半角公式,我们可以把它化成跟
sin
\sin
sin有关的式子,半角公式如下:
看第一个公式,我们两边都开平方,变成
(
sin
a
2
)
2
(\sin \frac{a}{2})^2
(sin2a)2 =
1
−
cos
a
2
\frac{1-\cos a}{2}
21−cosa,即
1
−
cos
a
1-\cos a
1−cosa = 2
(
sin
a
2
)
2
(\sin \frac{a}{2})^2
(sin2a)2,也即
1
−
cos
x
1-\cos x
1−cosx = 2
(
sin
x
2
)
2
(\sin \frac{x}{2})^2
(sin2x)2,带入题目中,
lim
x
→
0
1
−
cos
x
x
2
\lim_{x\rightarrow0} \frac{1-\cos x}{x^2}
limx→0x21−cosx就变成了
lim
x
→
0
2
(
sin
x
2
)
2
x
2
\lim_{x\rightarrow0} \frac{2(\sin \frac{x}{2})^2}{x^2}
limx→0x22(sin2x)2,接下来就要化简了,根据极限的四则运算,我们应把常数2提取出来,变成
2
lim
x
→
0
(
sin
x
2
)
2
x
2
2\lim_{x\rightarrow0} \frac{(\sin \frac{x}{2})^2}{x^2}
2limx→0x2(sin2x)2,继续化简,我们可以写成
2
lim
x
→
0
sin
x
2
x
∗
sin
x
2
x
2\lim_{x\rightarrow0} \frac{\sin \frac{x}{2}}{x} * \frac{\sin \frac{x}{2}}{x}
2limx→0xsin2x∗xsin2x,即
2
∗
lim
x
→
0
sin
x
2
x
∗
lim
x
→
0
sin
x
2
x
2*\lim_{x\rightarrow0} \frac{\sin \frac{x}{2}}{x} * \lim_{x\rightarrow0}\frac{\sin \frac{x}{2}}{x}
2∗limx→0xsin2x∗limx→0xsin2x,观察
sin
x
2
x
\frac{\sin \frac{x}{2}}{x}
xsin2x,看看怎么化成第一重要极限,看分母,为
x
x
x,为了可以用上第一重要极限,我们应该把分母
x
x
x变成
x
2
\frac{x}{2}
2x,简单,分母乘上
1
2
\frac{1}{2}
21,那么分子也得乘上
1
2
\frac{1}{2}
21,这样才能保证最终值不变,也就是
2
∗
lim
x
→
0
1
2
∗
sin
x
2
x
2
∗
lim
x
→
0
1
2
∗
sin
x
2
x
2
2*\lim_{x\rightarrow0} \frac{1}{2}*\frac{\sin \frac{x}{2}}{\frac{x}{2}} * \lim_{x\rightarrow0}\frac{1}{2}*\frac{\sin \frac{x}{2}}{\frac{x}{2}}
2∗limx→021∗2xsin2x∗limx→021∗2xsin2x,把常数提取出来,先相乘,
1
2
\frac{1}{2}
21乘以
1
2
\frac{1}{2}
21等于
1
4
\frac{1}{4}
41,
1
4
\frac{1}{4}
41再乘以2,等于
1
2
\frac{1}{2}
21,也即
1
2
∗
lim
x
→
0
sin
x
2
x
2
∗
lim
x
→
0
sin
x
2
x
2
\frac{1}{2}*\lim_{x\rightarrow0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} * \lim_{x\rightarrow0}\frac{\sin \frac{x}{2}}{\frac{x}{2}}
21∗limx→02xsin2x∗limx→02xsin2x,好,观察
lim
x
→
0
sin
x
2
x
2
\lim_{x\rightarrow0}\frac{\sin \frac{x}{2}}{\frac{x}{2}}
limx→02xsin2x,当
x
x
x趋向于0的时候,
x
2
\frac{x}{2}
2x也趋向于0,没问题,而且分子上的
s
i
n
sin
sin某某也等于分母,所以,它完全符合第一重要极限,等于1,所以,整体就是
1
2
∗
1
∗
1
\frac{1}{2}*1*1
21∗1∗1,最终结果就是
1
2
\frac{1}{2}
21。
lim x → 0 sin a x tan b x \lim_{x\rightarrow0} \frac{\sin ax}{\tan bx} limx→0tanbxsinax ( b ≠ 0 b\neq0 b=0)
为了迎合第一重要极限,我们必须把它变成第一重要极限,简单,分子分母同乘以 a x ax ax,变成 lim x → 0 a x ∗ sin a x a x ∗ tan b x \lim_{x\rightarrow0} \frac{ax*\sin ax}{ax * \tan bx} limx→0ax∗tanbxax∗sinax,即 lim x → 0 sin a x a x ∗ a x tan b x \lim_{x\rightarrow0} \frac{\sin ax}{ax}*\frac{ax}{ \tan bx} limx→0axsinax∗tanbxax,也即 lim x → 0 sin a x a x ∗ lim x → 0 a x tan b x \lim_{x\rightarrow0} \frac{\sin ax}{ax}*\lim_{x\rightarrow0} \frac{ax}{ \tan bx} limx→0axsinax∗limx→0tanbxax,第一个不用说了,看第二个,第二个又该怎么化简呢?在第1题的时候, lim x → 0 tan x x \lim_{x\rightarrow0} \frac{\tan x}{x} limx→0xtanx算出来的结果是不是1,是不是也说明了 lim x → 0 x tan x \lim_{x\rightarrow0} \frac{x}{\tan x} limx→0tanxx等于1,所以 lim x → 0 a x tan b x \lim_{x\rightarrow0} \frac{ax}{ \tan bx} limx→0tanbxax就可以写成 lim x → 0 b x ∗ a x b x ∗ tan b x \lim_{x\rightarrow0} \frac{bx*ax}{bx*\tan bx} limx→0bx∗tanbxbx∗ax,也就是 lim x → 0 b x tan b x ∗ a x b x \lim_{x\rightarrow0} \frac{bx}{\tan bx}* \frac{ax}{bx} limx→0tanbxbx∗bxax,所以,连起来就是 lim x → 0 sin a x a x ∗ lim x → 0 b x tan b x ∗ lim x → 0 a x b x \lim_{x\rightarrow0} \frac{\sin ax}{ax}*\lim_{x\rightarrow0} \frac{bx}{\tan bx}* \lim_{x\rightarrow0}\frac{ax}{bx} limx→0axsinax∗limx→0tanbxbx∗limx→0bxax,等于 1 ∗ 1 ∗ a x b x 1*1*\frac{ax}{bx} 1∗1∗bxax,所以,结果就是 a b \frac{a}{b} ba。
lim x → 1 sin ( 1 − x ) x − 1 \lim_{x\rightarrow1} \frac{\sin (1-x)}{\sqrt{x}-1} limx→1x−1sin(1−x)
也是一样的,看看可不可以化成第一重要极限,看题意,
x
x
x趋向于1,那么分母趋向于0,没问题,但是分子的
s
i
n
sin
sin某某跟分母的不一样,不一样,就要化简,所以,为了保证能迎合第一重要极限,我们让分子分母同乘以
1
−
x
1-x
1−x,或者也可以这样,让分母有理化,分子分母同乘以
x
+
1
\sqrt{x}+1
x+1,我们就试下让分母有理化这种,即
lim
x
→
1
sin
(
1
−
x
)
∗
(
x
+
1
)
(
x
−
1
)
(
x
+
1
)
\lim_{x\rightarrow1} \frac{\sin (1-x)*(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}
limx→1(x−1)(x+1)sin(1−x)∗(x+1),也就是
lim
x
→
1
sin
(
1
−
x
)
∗
(
x
+
1
)
x
−
1
\lim_{x\rightarrow1} \frac{\sin (1-x)*(\sqrt{x}+1)}{x-1}
limx→1x−1sin(1−x)∗(x+1),等价于
lim
x
→
1
sin
(
1
−
x
)
x
−
1
∗
(
x
+
1
)
\lim_{x\rightarrow1} \frac{\sin (1-x)}{x-1}*(\sqrt{x}+1)
limx→1x−1sin(1−x)∗(x+1),等价于
lim
x
→
1
sin
(
1
−
x
)
−
(
1
−
x
)
∗
(
x
+
1
)
\lim_{x\rightarrow1} \frac{\sin (1-x)}{-(1-x)}*(\sqrt{x}+1)
limx→1−(1−x)sin(1−x)∗(x+1),继续等价于
lim
x
→
1
−
1
∗
(
x
+
1
)
\lim_{x\rightarrow1} -1*(\sqrt{x}+1)
limx→1−1∗(x+1),即
−
lim
x
→
1
(
x
+
1
)
-\lim_{x\rightarrow1} (\sqrt{x}+1)
−limx→1(x+1),下面,我们就可以把1代进去了,所以,结果就是-2。
补充一下,像
1
−
x
1-x
1−x我们都可以根据平方差公式
a
2
−
b
2
=
(
a
+
b
)
(
a
−
b
)
a^2-b^2=(a+b)(a-b)
a2−b2=(a+b)(a−b)变成
1
2
−
x
2
1^2-\sqrt{x}^2
12−x2,也就是
(
1
+
x
)
(
1
−
x
)
(1+\sqrt{x})(1-\sqrt{x})
(1+x)(1−x)。
lim x → 0 a r c sin x x \lim_{x\rightarrow0} \frac{arc\sin x}{x} limx→0xarcsinx
我们发现,分子是一个反三角函数,即
y
=
a
r
c
s
i
n
x
y=arcsinx
y=arcsinx,图像如下:
学过反三角函数的都知道,
y
=
a
r
c
s
i
n
x
y=arcsinx
y=arcsinx本质上就是
s
i
n
y
=
x
siny=x
siny=x,很容易理解嘛,不就是
y
=
s
i
n
x
y=sinx
y=sinx的反函数嘛,有什么大不了的。其实这道题我们就可以用换元法来做,即把
x
x
x换成
s
i
n
y
siny
siny,所以就变成了
lim
s
i
n
y
→
0
y
s
i
n
y
\lim_{siny\rightarrow0} \frac{y}{siny}
limsiny→0sinyy,分子分母换一下位置,
lim
s
i
n
y
→
0
s
i
n
y
y
\lim_{siny\rightarrow0} \frac{siny}{y}
limsiny→0ysiny,看,
s
i
n
y
siny
siny趋近于0,那么分母的
y
y
y也趋向于0,分子的
s
i
n
sin
sin某某是不是跟分母一样,所以完全可以套用第一重要极限,所以结果为1。
lim
x
→
0
a
r
c
tan
x
x
\lim_{x\rightarrow0} \frac{arc\tan x}{x}
limx→0xarctanx也是一样的道理。
已知 lim x → 1 s i n a ( x − 1 ) x 2 − 1 \lim_{x\rightarrow1} \frac{sina(x-1)}{x^2-1} limx→1x2−1sina(x−1)=1,求a
=
lim
x
→
1
s
i
n
a
(
x
−
1
)
(
x
−
1
)
(
x
+
1
)
\lim_{x\rightarrow1} \frac{sina(x-1)}{(x-1)(x+1)}
limx→1(x−1)(x+1)sina(x−1)
=
lim
x
→
1
a
s
i
n
a
(
x
−
1
)
a
(
x
−
1
)
(
x
+
1
)
\lim_{x\rightarrow1} \frac{asina(x-1)}{a(x-1)(x+1)}
limx→1a(x−1)(x+1)asina(x−1)
=
lim
x
→
1
s
i
n
a
(
x
−
1
)
a
(
x
−
1
)
∗
a
x
+
1
\lim_{x\rightarrow1} \frac{sina(x-1)}{a(x-1)}*\frac{a}{x+1}
limx→1a(x−1)sina(x−1)∗x+1a
=
lim
x
→
1
a
x
+
1
\lim_{x\rightarrow1} \frac{a}{x+1}
limx→1x+1a
=
a
2
\frac{a}{2}
2a
因为最终结果等于1,所以a等于2。
lim x → ∞ ( 1 + m x ) x \lim_{x\rightarrow\infty} (1+\frac{m}{x})^x limx→∞(1+xm)x
根据第二重要极限, lim x → ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow\infty} (1+\frac{1}{x})^x=e limx→∞(1+x1)x=e,所以,我们必须凑成这个样子,怎么凑?要想让题意等于结果 e e e,那就必须让它变成 lim x → ∞ ( 1 + m x ) x m \lim_{x\rightarrow\infty} (1+\frac{m}{x})^\frac{x}{m} limx→∞(1+xm)mx,所以, lim x → ∞ ( 1 + m x ) x \lim_{x\rightarrow\infty} (1+\frac{m}{x})^x limx→∞(1+xm)x就等价于 lim x → ∞ ( ( 1 + m x ) x m ) m \lim_{x\rightarrow\infty} ((1+\frac{m}{x})^\frac{x}{m})^m limx→∞((1+xm)mx)m,所以,最终结果就是 e m e^m em。
lim x → 0 ( 1 + 4 x ) − 1 x \lim_{x\rightarrow0} (1+4x)^{-\frac{1}{x}} limx→0(1+4x)−x1
根据公式, lim x → 0 ( 1 + x ) 1 x = e \lim_{x\rightarrow0} (1+x)^{\frac{1}{x}}=e limx→0(1+x)x1=e,所以 lim x → 0 ( 1 + 4 x ) − 1 x \lim_{x\rightarrow0} (1+4x)^{-\frac{1}{x}} limx→0(1+4x)−x1等价于 lim x → 0 ( ( 1 + 4 x ) 1 4 x ) − 4 \lim_{x\rightarrow0} ((1+4x)^\frac{1}{4x})^{-4} limx→0((1+4x)4x1)−4,所以,结果为 e − 4 e^{-4} e−4。
lim x → ∞ ( x + 5 x + 2 ) x + 3 \lim_{x\rightarrow\infty} (\frac{x+5}{x+2})^{x+3} limx→∞(x+2x+5)x+3
根据题意,我们需要对 x + 5 x + 2 \frac{x+5}{x+2} x+2x+5进行化简,化简如下:
=>
x
+
2
+
3
x
+
2
\frac{x+2+3}{x+2}
x+2x+2+3
=>
x
+
2
x
+
2
+
3
x
+
2
\frac{x+2}{x+2}+\frac{3}{x+2}
x+2x+2+x+23
=>
1
+
3
x
+
2
1+\frac{3}{x+2}
1+x+23
所以,题意我们可以变成
lim
x
→
∞
(
1
+
3
x
+
2
)
x
+
3
\lim_{x\rightarrow\infty} (1+\frac{3}{x+2})^{x+3}
limx→∞(1+x+23)x+3,接下来套公式,我们必须把它凑成
lim
x
→
∞
(
1
+
3
x
+
2
)
x
+
2
3
=
e
\lim_{x\rightarrow\infty} (1+\frac{3}{x+2})^{\frac{x+2}{3}}=e
limx→∞(1+x+23)3x+2=e的形式,所以,它等价于
lim
x
→
∞
(
(
1
+
3
x
+
2
)
x
+
2
3
)
3
x
+
2
∗
(
x
+
3
)
\lim_{x\rightarrow\infty} ((1+\frac{3}{x+2})^{\frac{x+2}{3}})^{\frac{3}{x+2}*(x+3)}
limx→∞((1+x+23)3x+2)x+23∗(x+3),即等于
e
3
x
+
2
∗
(
x
+
3
)
e^{\frac{3}{x+2}*(x+3)}
ex+23∗(x+3),也就是
e
3
x
+
9
x
+
2
e^{\frac{3x+9}{x+2}}
ex+23x+9,我们对
3
x
+
9
x
+
2
\frac{3x+9}{x+2}
x+23x+9化简下,分子分母同除以x,结果就是
3
+
9
x
1
+
2
x
\frac{3+\frac{9}{x}}{1+\frac{2}{x}}
1+x23+x9,也即
e
3
+
9
x
1
+
2
x
e^{\frac{3+\frac{9}{x}}{1+\frac{2}{x}}}
e1+x23+x9,因为
x
x
x趋于无穷,又因为
n
∞
=
0
\frac{n}{\infty}=0
∞n=0,所以
e
3
+
9
x
1
+
2
x
e^{\frac{3+\frac{9}{x}}{1+\frac{2}{x}}}
e1+x23+x9就等于
e
3
e^3
e3。
lim x → 0 ( 1 − tan x ) 1 x \lim_{x\rightarrow0} (1-\tan x)^\frac{1}{x} limx→0(1−tanx)x1
=>
lim
x
→
0
(
(
(
1
+
(
−
tan
x
)
)
−
1
tan
x
)
−
t
a
n
x
1
)
1
x
\lim_{x\rightarrow0} (((1+(-\tan x))^{-\frac{1}{\tan x}})^{-\frac{tan x}{1}})^\frac{1}{x}
limx→0(((1+(−tanx))−tanx1)−1tanx)x1
=>
lim
x
→
0
(
e
−
t
a
n
x
1
)
1
x
\lim_{x\rightarrow0} (e^{-\frac{tan x}{1}})^\frac{1}{x}
limx→0(e−1tanx)x1
=>
lim
x
→
0
e
−
t
a
n
x
x
\lim_{x\rightarrow0} e^{-\frac{tan x}{x}}
limx→0e−xtanx
=>
e
−
1
e^{-1}
e−1
以上的几个求极限的练习,完全是在练习两个重要极限,但是在考试的时候可千万别这样,能用洛必达法则去做的一定要用洛必达法则,同时还要观察能不能用等价无穷小去替换。