高数·两个重要极限练习

lim ⁡ x → 0 tan ⁡ x x \lim_{x\rightarrow0} \frac{\tan x}{x} limx0xtanx

  遇到这种带分式的,又有三角函数的,要立马想到第一重要极限,即 lim ⁡ x → 0 sin ⁡ x x \lim_{x\rightarrow0} \frac{\sin x}{x} limx0xsinx=1。而题意的分子上却是 tan ⁡ x \tan x tanx,既然是 tan ⁡ x \tan x tanx,我们就把它变成 sin ⁡ x cos ⁡ x \frac{\sin x}{\cos x} cosxsinx,所以是 lim ⁡ x → 0 sin ⁡ x cos ⁡ x x \lim_{x\rightarrow0} \frac{\frac{\sin x}{\cos x}}{x} limx0xcosxsinx,除以一个数,等于乘这个数的倒数,所以 lim ⁡ x → 0 sin ⁡ x cos ⁡ x ∗ 1 x \lim_{x\rightarrow0} \frac{\sin x}{\cos x} * \frac{1}{x} limx0cosxsinxx1,为了符合第一重要极限,所以等价于 lim ⁡ x → 0 sin ⁡ x x ∗ 1 cos ⁡ x \lim_{x\rightarrow0} \frac{\sin x}{x} * \frac{1}{\cos x} limx0xsinxcosx1,这个不难理解吧,然后下一步该怎么做呢?根据极限的四则运算,等于 lim ⁡ x → 0 sin ⁡ x x ∗ lim ⁡ x → 0 1 cos ⁡ x \lim_{x\rightarrow0} \frac{\sin x}{x} * \lim_{x\rightarrow0} \frac{1}{\cos x} limx0xsinxlimx0cosx1,接下来就开始真正的运算了,第一个等于1,不用说,根据第一重要极限公式,第二个当 x x x趋向于0的时候, cos ⁡ x \cos x cosx应该趋向于1,因为 cos ⁡ 0 \cos 0 cos0等于1嘛,所以1分之1等于1,那么两个1相乘,结果还是1,所以答案等于1。

lim ⁡ x → 0 1 − cos ⁡ x x 2 \lim_{x\rightarrow0} \frac{1-\cos x}{x^2} limx0x21cosx

  一样,我们必须想办法把它化成 lim ⁡ x → 0 sin ⁡ x x \lim_{x\rightarrow0} \frac{\sin x}{x} limx0xsinx=1,那怎么化呢?看题意,分子是 1 − cos ⁡ x 1-\cos x 1cosx,那么根据半角公式,我们可以把它化成跟 sin ⁡ \sin sin有关的式子,半角公式如下:
在这里插入图片描述看第一个公式,我们两边都开平方,变成 ( sin ⁡ a 2 ) 2 (\sin \frac{a}{2})^2 (sin2a)2 = 1 − cos ⁡ a 2 \frac{1-\cos a}{2} 21cosa,即 1 − cos ⁡ a 1-\cos a 1cosa = 2 ( sin ⁡ a 2 ) 2 (\sin \frac{a}{2})^2 (sin2a)2,也即 1 − cos ⁡ x 1-\cos x 1cosx = 2 ( sin ⁡ x 2 ) 2 (\sin \frac{x}{2})^2 (sin2x)2,带入题目中, lim ⁡ x → 0 1 − cos ⁡ x x 2 \lim_{x\rightarrow0} \frac{1-\cos x}{x^2} limx0x21cosx就变成了 lim ⁡ x → 0 2 ( sin ⁡ x 2 ) 2 x 2 \lim_{x\rightarrow0} \frac{2(\sin \frac{x}{2})^2}{x^2} limx0x22(sin2x)2,接下来就要化简了,根据极限的四则运算,我们应把常数2提取出来,变成 2 lim ⁡ x → 0 ( sin ⁡ x 2 ) 2 x 2 2\lim_{x\rightarrow0} \frac{(\sin \frac{x}{2})^2}{x^2} 2limx0x2(sin2x)2,继续化简,我们可以写成 2 lim ⁡ x → 0 sin ⁡ x 2 x ∗ sin ⁡ x 2 x 2\lim_{x\rightarrow0} \frac{\sin \frac{x}{2}}{x} * \frac{\sin \frac{x}{2}}{x} 2limx0xsin2xxsin2x,即 2 ∗ lim ⁡ x → 0 sin ⁡ x 2 x ∗ lim ⁡ x → 0 sin ⁡ x 2 x 2*\lim_{x\rightarrow0} \frac{\sin \frac{x}{2}}{x} * \lim_{x\rightarrow0}\frac{\sin \frac{x}{2}}{x} 2limx0xsin2xlimx0xsin2x,观察 sin ⁡ x 2 x \frac{\sin \frac{x}{2}}{x} xsin2x,看看怎么化成第一重要极限,看分母,为 x x x,为了可以用上第一重要极限,我们应该把分母 x x x变成 x 2 \frac{x}{2} 2x,简单,分母乘上 1 2 \frac{1}{2} 21,那么分子也得乘上 1 2 \frac{1}{2} 21,这样才能保证最终值不变,也就是 2 ∗ lim ⁡ x → 0 1 2 ∗ sin ⁡ x 2 x 2 ∗ lim ⁡ x → 0 1 2 ∗ sin ⁡ x 2 x 2 2*\lim_{x\rightarrow0} \frac{1}{2}*\frac{\sin \frac{x}{2}}{\frac{x}{2}} * \lim_{x\rightarrow0}\frac{1}{2}*\frac{\sin \frac{x}{2}}{\frac{x}{2}} 2limx0212xsin2xlimx0212xsin2x,把常数提取出来,先相乘, 1 2 \frac{1}{2} 21乘以 1 2 \frac{1}{2} 21等于 1 4 \frac{1}{4} 41 1 4 \frac{1}{4} 41再乘以2,等于 1 2 \frac{1}{2} 21,也即 1 2 ∗ lim ⁡ x → 0 sin ⁡ x 2 x 2 ∗ lim ⁡ x → 0 sin ⁡ x 2 x 2 \frac{1}{2}*\lim_{x\rightarrow0} \frac{\sin \frac{x}{2}}{\frac{x}{2}} * \lim_{x\rightarrow0}\frac{\sin \frac{x}{2}}{\frac{x}{2}} 21limx02xsin2xlimx02xsin2x,好,观察 lim ⁡ x → 0 sin ⁡ x 2 x 2 \lim_{x\rightarrow0}\frac{\sin \frac{x}{2}}{\frac{x}{2}} limx02xsin2x,当 x x x趋向于0的时候, x 2 \frac{x}{2} 2x也趋向于0,没问题,而且分子上的 s i n sin sin某某也等于分母,所以,它完全符合第一重要极限,等于1,所以,整体就是 1 2 ∗ 1 ∗ 1 \frac{1}{2}*1*1 2111,最终结果就是 1 2 \frac{1}{2} 21

lim ⁡ x → 0 sin ⁡ a x tan ⁡ b x \lim_{x\rightarrow0} \frac{\sin ax}{\tan bx} limx0tanbxsinax b ≠ 0 b\neq0 b=0

   为了迎合第一重要极限,我们必须把它变成第一重要极限,简单,分子分母同乘以 a x ax ax,变成 lim ⁡ x → 0 a x ∗ sin ⁡ a x a x ∗ tan ⁡ b x \lim_{x\rightarrow0} \frac{ax*\sin ax}{ax * \tan bx} limx0axtanbxaxsinax,即 lim ⁡ x → 0 sin ⁡ a x a x ∗ a x tan ⁡ b x \lim_{x\rightarrow0} \frac{\sin ax}{ax}*\frac{ax}{ \tan bx} limx0axsinaxtanbxax,也即 lim ⁡ x → 0 sin ⁡ a x a x ∗ lim ⁡ x → 0 a x tan ⁡ b x \lim_{x\rightarrow0} \frac{\sin ax}{ax}*\lim_{x\rightarrow0} \frac{ax}{ \tan bx} limx0axsinaxlimx0tanbxax,第一个不用说了,看第二个,第二个又该怎么化简呢?在第1题的时候, lim ⁡ x → 0 tan ⁡ x x \lim_{x\rightarrow0} \frac{\tan x}{x} limx0xtanx算出来的结果是不是1,是不是也说明了 lim ⁡ x → 0 x tan ⁡ x \lim_{x\rightarrow0} \frac{x}{\tan x} limx0tanxx等于1,所以 lim ⁡ x → 0 a x tan ⁡ b x \lim_{x\rightarrow0} \frac{ax}{ \tan bx} limx0tanbxax就可以写成 lim ⁡ x → 0 b x ∗ a x b x ∗ tan ⁡ b x \lim_{x\rightarrow0} \frac{bx*ax}{bx*\tan bx} limx0bxtanbxbxax,也就是 lim ⁡ x → 0 b x tan ⁡ b x ∗ a x b x \lim_{x\rightarrow0} \frac{bx}{\tan bx}* \frac{ax}{bx} limx0tanbxbxbxax,所以,连起来就是 lim ⁡ x → 0 sin ⁡ a x a x ∗ lim ⁡ x → 0 b x tan ⁡ b x ∗ lim ⁡ x → 0 a x b x \lim_{x\rightarrow0} \frac{\sin ax}{ax}*\lim_{x\rightarrow0} \frac{bx}{\tan bx}* \lim_{x\rightarrow0}\frac{ax}{bx} limx0axsinaxlimx0tanbxbxlimx0bxax,等于 1 ∗ 1 ∗ a x b x 1*1*\frac{ax}{bx} 11bxax,所以,结果就是 a b \frac{a}{b} ba

lim ⁡ x → 1 sin ⁡ ( 1 − x ) x − 1 \lim_{x\rightarrow1} \frac{\sin (1-x)}{\sqrt{x}-1} limx1x 1sin(1x)

  也是一样的,看看可不可以化成第一重要极限,看题意, x x x趋向于1,那么分母趋向于0,没问题,但是分子的 s i n sin sin某某跟分母的不一样,不一样,就要化简,所以,为了保证能迎合第一重要极限,我们让分子分母同乘以 1 − x 1-x 1x,或者也可以这样,让分母有理化,分子分母同乘以 x + 1 \sqrt{x}+1 x +1,我们就试下让分母有理化这种,即 lim ⁡ x → 1 sin ⁡ ( 1 − x ) ∗ ( x + 1 ) ( x − 1 ) ( x + 1 ) \lim_{x\rightarrow1} \frac{\sin (1-x)*(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)} limx1(x 1)(x +1)sin(1x)(x +1),也就是 lim ⁡ x → 1 sin ⁡ ( 1 − x ) ∗ ( x + 1 ) x − 1 \lim_{x\rightarrow1} \frac{\sin (1-x)*(\sqrt{x}+1)}{x-1} limx1x1sin(1x)(x +1),等价于 lim ⁡ x → 1 sin ⁡ ( 1 − x ) x − 1 ∗ ( x + 1 ) \lim_{x\rightarrow1} \frac{\sin (1-x)}{x-1}*(\sqrt{x}+1) limx1x1sin(1x)(x +1),等价于 lim ⁡ x → 1 sin ⁡ ( 1 − x ) − ( 1 − x ) ∗ ( x + 1 ) \lim_{x\rightarrow1} \frac{\sin (1-x)}{-(1-x)}*(\sqrt{x}+1) limx1(1x)sin(1x)(x +1),继续等价于 lim ⁡ x → 1 − 1 ∗ ( x + 1 ) \lim_{x\rightarrow1} -1*(\sqrt{x}+1) limx11(x +1),即 − lim ⁡ x → 1 ( x + 1 ) -\lim_{x\rightarrow1} (\sqrt{x}+1) limx1(x +1),下面,我们就可以把1代进去了,所以,结果就是-2。
  补充一下,像 1 − x 1-x 1x我们都可以根据平方差公式 a 2 − b 2 = ( a + b ) ( a − b ) a^2-b^2=(a+b)(a-b) a2b2=(a+b)(ab)变成 1 2 − x 2 1^2-\sqrt{x}^2 12x 2,也就是 ( 1 + x ) ( 1 − x ) (1+\sqrt{x})(1-\sqrt{x}) (1+x )(1x )

lim ⁡ x → 0 a r c sin ⁡ x x \lim_{x\rightarrow0} \frac{arc\sin x}{x} limx0xarcsinx

  我们发现,分子是一个反三角函数,即 y = a r c s i n x y=arcsinx y=arcsinx,图像如下:
在这里插入图片描述学过反三角函数的都知道, y = a r c s i n x y=arcsinx y=arcsinx本质上就是 s i n y = x siny=x siny=x,很容易理解嘛,不就是 y = s i n x y=sinx y=sinx的反函数嘛,有什么大不了的。其实这道题我们就可以用换元法来做,即把 x x x换成 s i n y siny siny,所以就变成了 lim ⁡ s i n y → 0 y s i n y \lim_{siny\rightarrow0} \frac{y}{siny} limsiny0sinyy,分子分母换一下位置, lim ⁡ s i n y → 0 s i n y y \lim_{siny\rightarrow0} \frac{siny}{y} limsiny0ysiny,看, s i n y siny siny趋近于0,那么分母的 y y y也趋向于0,分子的 s i n sin sin某某是不是跟分母一样,所以完全可以套用第一重要极限,所以结果为1。
   lim ⁡ x → 0 a r c tan ⁡ x x \lim_{x\rightarrow0} \frac{arc\tan x}{x} limx0xarctanx也是一样的道理。

已知 lim ⁡ x → 1 s i n a ( x − 1 ) x 2 − 1 \lim_{x\rightarrow1} \frac{sina(x-1)}{x^2-1} limx1x21sina(x1)=1,求a

= lim ⁡ x → 1 s i n a ( x − 1 ) ( x − 1 ) ( x + 1 ) \lim_{x\rightarrow1} \frac{sina(x-1)}{(x-1)(x+1)} limx1(x1)(x+1)sina(x1)
= lim ⁡ x → 1 a s i n a ( x − 1 ) a ( x − 1 ) ( x + 1 ) \lim_{x\rightarrow1} \frac{asina(x-1)}{a(x-1)(x+1)} limx1a(x1)(x+1)asina(x1)
= lim ⁡ x → 1 s i n a ( x − 1 ) a ( x − 1 ) ∗ a x + 1 \lim_{x\rightarrow1} \frac{sina(x-1)}{a(x-1)}*\frac{a}{x+1} limx1a(x1)sina(x1)x+1a
= lim ⁡ x → 1 a x + 1 \lim_{x\rightarrow1} \frac{a}{x+1} limx1x+1a
= a 2 \frac{a}{2} 2a
因为最终结果等于1,所以a等于2。

lim ⁡ x → ∞ ( 1 + m x ) x \lim_{x\rightarrow\infty} (1+\frac{m}{x})^x limx(1+xm)x

  根据第二重要极限 lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x\rightarrow\infty} (1+\frac{1}{x})^x=e limx(1+x1)x=e,所以,我们必须凑成这个样子,怎么凑?要想让题意等于结果 e e e,那就必须让它变成 lim ⁡ x → ∞ ( 1 + m x ) x m \lim_{x\rightarrow\infty} (1+\frac{m}{x})^\frac{x}{m} limx(1+xm)mx,所以, lim ⁡ x → ∞ ( 1 + m x ) x \lim_{x\rightarrow\infty} (1+\frac{m}{x})^x limx(1+xm)x就等价于 lim ⁡ x → ∞ ( ( 1 + m x ) x m ) m \lim_{x\rightarrow\infty} ((1+\frac{m}{x})^\frac{x}{m})^m limx((1+xm)mx)m,所以,最终结果就是 e m e^m em

lim ⁡ x → 0 ( 1 + 4 x ) − 1 x \lim_{x\rightarrow0} (1+4x)^{-\frac{1}{x}} limx0(1+4x)x1

  根据公式, lim ⁡ x → 0 ( 1 + x ) 1 x = e \lim_{x\rightarrow0} (1+x)^{\frac{1}{x}}=e limx0(1+x)x1=e,所以 lim ⁡ x → 0 ( 1 + 4 x ) − 1 x \lim_{x\rightarrow0} (1+4x)^{-\frac{1}{x}} limx0(1+4x)x1等价于 lim ⁡ x → 0 ( ( 1 + 4 x ) 1 4 x ) − 4 \lim_{x\rightarrow0} ((1+4x)^\frac{1}{4x})^{-4} limx0((1+4x)4x1)4,所以,结果为 e − 4 e^{-4} e4

lim ⁡ x → ∞ ( x + 5 x + 2 ) x + 3 \lim_{x\rightarrow\infty} (\frac{x+5}{x+2})^{x+3} limx(x+2x+5)x+3

  根据题意,我们需要对 x + 5 x + 2 \frac{x+5}{x+2} x+2x+5进行化简,化简如下:

=> x + 2 + 3 x + 2 \frac{x+2+3}{x+2} x+2x+2+3
=> x + 2 x + 2 + 3 x + 2 \frac{x+2}{x+2}+\frac{3}{x+2} x+2x+2+x+23
=> 1 + 3 x + 2 1+\frac{3}{x+2} 1+x+23
所以,题意我们可以变成 lim ⁡ x → ∞ ( 1 + 3 x + 2 ) x + 3 \lim_{x\rightarrow\infty} (1+\frac{3}{x+2})^{x+3} limx(1+x+23)x+3,接下来套公式,我们必须把它凑成 lim ⁡ x → ∞ ( 1 + 3 x + 2 ) x + 2 3 = e \lim_{x\rightarrow\infty} (1+\frac{3}{x+2})^{\frac{x+2}{3}}=e limx(1+x+23)3x+2=e的形式,所以,它等价于 lim ⁡ x → ∞ ( ( 1 + 3 x + 2 ) x + 2 3 ) 3 x + 2 ∗ ( x + 3 ) \lim_{x\rightarrow\infty} ((1+\frac{3}{x+2})^{\frac{x+2}{3}})^{\frac{3}{x+2}*(x+3)} limx((1+x+23)3x+2)x+23(x+3),即等于 e 3 x + 2 ∗ ( x + 3 ) e^{\frac{3}{x+2}*(x+3)} ex+23(x+3),也就是 e 3 x + 9 x + 2 e^{\frac{3x+9}{x+2}} ex+23x+9,我们对 3 x + 9 x + 2 \frac{3x+9}{x+2} x+23x+9化简下,分子分母同除以x,结果就是 3 + 9 x 1 + 2 x \frac{3+\frac{9}{x}}{1+\frac{2}{x}} 1+x23+x9,也即 e 3 + 9 x 1 + 2 x e^{\frac{3+\frac{9}{x}}{1+\frac{2}{x}}} e1+x23+x9,因为 x x x趋于无穷,又因为 n ∞ = 0 \frac{n}{\infty}=0 n=0,所以 e 3 + 9 x 1 + 2 x e^{\frac{3+\frac{9}{x}}{1+\frac{2}{x}}} e1+x23+x9就等于 e 3 e^3 e3

lim ⁡ x → 0 ( 1 − tan ⁡ x ) 1 x \lim_{x\rightarrow0} (1-\tan x)^\frac{1}{x} limx0(1tanx)x1

=> lim ⁡ x → 0 ( ( ( 1 + ( − tan ⁡ x ) ) − 1 tan ⁡ x ) − t a n x 1 ) 1 x \lim_{x\rightarrow0} (((1+(-\tan x))^{-\frac{1}{\tan x}})^{-\frac{tan x}{1}})^\frac{1}{x} limx0(((1+(tanx))tanx1)1tanx)x1
=> lim ⁡ x → 0 ( e − t a n x 1 ) 1 x \lim_{x\rightarrow0} (e^{-\frac{tan x}{1}})^\frac{1}{x} limx0(e1tanx)x1
=> lim ⁡ x → 0 e − t a n x x \lim_{x\rightarrow0} e^{-\frac{tan x}{x}} limx0extanx
=> e − 1 e^{-1} e1

  以上的几个求极限的练习,完全是在练习两个重要极限,但是在考试的时候可千万别这样,能用洛必达法则去做的一定要用洛必达法则,同时还要观察能不能用等价无穷小去替换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值