群智能三维路径规划算法2 遗传算法

算法简介
  • 遗传算法(Genetic Algorithm)源于自然界“自然选择”和“优胜劣汰”的进化规律,是进化计算的一个分支,是一种模拟自然界生物进化过程的随机搜索算法
  • 简单易懂、通用、鲁棒性强、适合并行处理,可用于解决各种复杂优化问题
相关概念
  • 染色体:携带基因信息的数据结构,不同染色体组合表征不同的问题解
  • 个体 (individual) : 不同染色体组合就代表一个个体
  • 种群 (population) : 个体的集合,该集合内个体数称为种群的大小
  • 进化 (evolution) : 种群的不断迭代使其品质不断改良
  • 适应度 (fitness) : 个体适应环境性能的评价指标 (目标函数)
遗传过程的术语
  • 选择 (selection) : 指以一定的概率从种群中选择若干个体进行交配的操作
  • 交叉 (crossover) : 在两个染色体的某一相同位置处DNA被切断,其前后两串分别交叉组合形成两个新的染色体,又称基因重组,俗称“杂交”
  • 变异 (mutation) : 种群在迭代过程中,基因会产生突变,也即是染色体发生变异,这些新的染色体表现出新的性状
遗传算法在三维空间进行路径规划的具体思路
  • 将遗传算法的染色体视为三维空间的控制点,即一个染色体对应着一个控制点,显然染色体个数越多,控制点越多,最终生成的三维路径越有可能接近理论最优解
  • 交叉操作可以考虑将某两个个体的染色体 (控制点的 x/y/z 坐标序列) 进行两两交换
  • 变异操作可以考虑将某个个体的某一个染色体 (控制点) 的 x/y/z 坐标用另一个随机数代替
步骤
  1. 随机产生一组初始个体构成初始种群,并评价每一个个体的适应度
  2. 判断算法收敛准则是否满足。若满足则输出搜索结果,否则执行以下步骤
  3. 根据适应度大小以一定概率按照轮盘赌法执行选择操作
  4. 按交叉概率执行交叉操作
  5. 返回第2步
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值