4-1 叠加定理
原电路的响应则为相应分电路中分响应的和。在线性电阻电路中,某处电压或电流都是电路中各个独立电源单独作用时,在该处分别产生的电压或电流的叠加。在有受控的电路中,把受控源保留在各分电路之中。
注意点:
(1)适用于线性电路
(2)将电源置零时,电压源短路,电流源开路,电阻不动,受控源保留
(3)叠加时各分路中的电压和电流的参考方向可以取为与原电路中的相同
(4)功率不叠加,就是原电路的功率不等于各分录的功率的叠加。因为不成线性。
4-2 替代定理
在电路中已求得与
两个一端口网络连接端口的电压
与电流
,那么可以用过一个
的电压源或
的电流源来替代其中的一个网络,而使另一个网络的内部电压、电流均维持不变。但是如果有受控源的控制量的话,被替代后就无法表达这种控制关系,这时,
就不可以被替代。
4-3 戴维宁定理和诺顿定理
对一个不含独立源、仅含线性电阻和受控源的一端口网络,其端口输入电压与端口输入电流成比例,这个比值就定义为该一端口的输入电阻或等效电阻。可以用一个电阻等效置换。
而对于即含线性电阻、受控源又含独立电源的一端口,可以外加一个电压源,然后求得它的电压U 和电流I的关系,比如: 或
。两个可以分别等效为以下电路:
前者为戴维宁等效,后者为诺顿等效。那个电阻等于一端口内全部独立电源置零后的输入电阻。
当求得 为零而开路电压为有限值时,此时含源一端口存在戴维宁等效电路且仅为一个无伴电压源,而不存在诺顿等效电路;如果
为无穷大,则只有诺顿等效电路且没有电阻并联,只有一个电流源,没有戴维宁等效电路。
4-4 最大功率传输定理
上图的电阻 的功率 :
其中 为电源发出的功率,
就是传输效率
4-5 特勒根定理
跟基尔霍夫定律等价
定理1:对于一个 n 个结点和 b 条支路的电路,有
就是说任何一个电路的全部支路吸收的功率之和等于零
定理2:对于两个具有相同的图的 n 个结点和 b 条支路的电路,有
就是对两个具有相同拓扑的电路中,一个电路的支路电压和另一个电路的支路电流,或者可以是同一电路在不同时刻的相应支路电压和支路电流必须遵循的数学关系。
4-6 互易定理
对于一个仅含线性电阻且只有一个激励的电路,在保持电路将独立源置零后电路拓扑结构不变的情况下,激励和响应互换位置后,响应与激励的比值保持不变。
第一种形式:
第二种形式:
激励是电流源,响应是开路电压
第三种形式:
激励是电压源,响应是短路电流
方框内部 N 的 (b-2) 条支路的电压和电流要满足 :
4-7 对偶定理
串联与并联,电压与电流,电阻R和电导G都是对偶元素。
在对偶电路中,某些元素之间的关系(或方程)可以通过对偶元素的交换而相互交换。根据对偶原理,如果在某电路中导出某一关系式和结论,就等于解决了和它对偶的另一个电路中的关系式和结论。可以利用这一点来记忆公式和作推断。对偶的内容包括:电路的拓扑结构、电路变量、电路元件、一些电路的公式(或方程)甚至定理。例如戴维宁定理和诺顿定理就互为对偶。