SPSS对数据进行相关性和显著性分析

显著性分析:

  1. 将数据导入SPSS,重新命名变量名,检查数据类型是否为数字

  2. 对原始数据进行重新赋值,主要是将自变量赋值为1.2.3.4.5….等

  3. 菜单栏点击analyze—general linear model—Univariate,将因变量移入dependent variable,自变量移入Fixed factors

  4. 点击model,选择Full factorial,点击continue

  5. 点击plots,将交互作用的两个自变量添加到横轴和纵轴;

  6. 点击options,在display窗口选择 homogeneity tests(方差齐性检验),默认显著性水平为0.05,点击continue

  7. 在Univariate对话框,点击OK,即可查看输出表;

还可以根据生成的图来判断交互作用;

注意:在非交互作用分析时,要在“模型”的类型中选择“主效应”,而不是“交互”。主效应是分析无交互作用时影响分析的。

相关性分析:

SPSS操作步骤

  1. 点击analyze—correlate—bivariate,打开bivariate correlations 对话框

  2. 将变量移动到variables 对话框,勾选相关系数Pearson,选择双边检验;

  3. 点击options,勾选“均值与标准差”,“叉积离差阵与协方差阵”,点击continue

  4. 完成操作,即可看到相关性系数;

关于相关性和显著性的一点数学知识:

  1. spss做相关分析显著性都为0,其实是小于0.001,就是非常小的数字,点击查看可以看出具体的数字,说明显著性较好。

  2. 显著性表示的两个变量之间的显著性差异,数值越大,表示显著性越大,反之,表示两者之间存在较强的交互作用。

  3. 数据列入SPSS之前要进行数据的排查,删除异常点,得到的数据会令你惊喜;

  4. 方差分析的实质是检验多个总体均值是否具有显著性差异,通过观察各个观测数据的误差来源分析得到的,实际应用中方差可以来检验各种因素对因变量是否有显著影响。

总离差平方和反映数据的总波动或者总误差在这里插入图片描述

SST=SSA+SSE;

SSA为组间平方和,反映随机误差和系统误差的大小。

SSE为组内平方和,反映随机误差的大小;

F=SSA/SSE ,比较SSA在SST中的占比大小;

对SSPS计算来说,即为显著性概率Sig.,若Sig.<α(0.01或者0.05),则显著性水平α下拒绝H0,认为A影响显著。

  1. 注意点:所有数据都是观测都是服从正态分布的简单随机样本;

独立实验;

各组观察数据等方差;

  1. 皮尔森Pearson相关系数:仅仅表示的是一种线性关系。
    在这里插入图片描述
### SPSS中的显著性检验方法 #### 显著性检验概述 显著性检验是统计学中用来判断两个或多个样本之间是否存在显著差异的一种方法。通过显著性检验可以评估观察到的数据是否支持某种假设,或者验证某一特定条件下的数据分布特性。 #### 常见的显著性检验方法及其应用 以下是几种常见的SPSS显著性检验方法: 1. **正态性检验** 正态性检验用于检测一组数据是否服从正态分布。如果数据不符合正态分布,则可能需要采用非参数检验或其他替代方法。 - 使用SPSS进行正态性检验时,可以通过Kolmogorov-Smirnov (K-S) 检验完成。当输出结果显示渐近显著性(双侧)大于0.05时,表明该数据集符合正态分布[^3]。 2. **Tukey事后检验** Tukey事后检验适用于方差分析后的多重比较情况。它能够帮助识别哪些组之间的均值存在显著差异。 - 如果进行了ANOVA并发现总体上各组间有显著差异,那么可以进一步执行Tukey HSD测试来定位具体的差异所在[^1]。 3. **游程检验(Runs Test)** 游程检验主要用于检查序列中的随机模式。对于两独立样本的情况,Wald-Wolfowitz runs test 可被应用于确定这两个群体是否有相同的分布形式。 - 不同于其他一些基于秩次的方法,此技术特别适合处理二分类变量的情形,并且强调的是顺序而非数值大小上的变化趋势[^4]。 4. **非参数假设检验** 当无法满足某些前提假定时(比如正常性方差齐性),可以选择使用非参数检验作为备选方案之一。这类方法通常依赖排名而不是原始测量值来进行推断。 - 折线图配合显著标记可以帮助直观展示这些无参检定的结果,在实际科研论文写作中有广泛应用价值[^2]。 #### 实际操作指南 为了更好地理解上述理论概念的实际运用过程,请按照以下方式设置您的实验环境以及导入相应的文件至SPSS平台内开展深入探讨: ```plaintext Analyze -> Descriptive Statistics / Compare Means etc. ``` #### 结论 综上所述,选择合适的显著性水平α=0.05通常是默认标准,但具体情况仍需依据项目背景灵活调整。值得注意的是,即使采用了恰当的技术手段也不能完全排除偶然误差带来的影响因素,因此建议多次重复试验加以确认最终结论的有效可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值