经典论文《Efficient Estimation of Word Representations in Vector Space》学习笔记

阅读论文必备知识

论文
● 统计语言模型中的平滑操作
有一些词或词组在语料中没有出现过,但是这不能代表它不可能存在
平滑操作就是给那些没有出现过的词或者词组也给一个比较小的概率
● 平滑操作的问题
参数空间过大
数据稀疏严重
● 马尔科夫假设
下一个词的出现仅依赖于前面的一个词或几个词语言模型评价指标:困惑度语言模型是无监督的任务
在这里插入图片描述

softmax函数,指数操作,让数为正数,使它成为0到1之间
● batch问题,批次,补pad位,rnn可变长输入
● 语言模型评价指标
在这里插入图片描述

1.论文核心部分研读

在这里插入图片描述

1.1 word2vec的基本思想

在这里插入图片描述

1.2 skip-gram原理

在这里插入图片描述
首先映射成一个one-hot向量,与词向量矩阵相乘,得到1*D的词向量,再与周围词向量矩阵相乘,得到1*V向量,再经过softmax函数得到每个词的概率,通过索引知该词的概率,目标是要使该词的概率越大越好,再经过梯度反向传播,将w和w训练,一般取w或者w和w的平均值
输出层表达式 p ( w i − 1 ∣ w i ) = p(w_{i-1}|w_i)= p(wi1wi)=
e x p ( u w i − 1 T v w i ) ∑ j = 1 V e x p ( u w T v w i ) \frac{exp(u_{w_{i-1}}^{T} v_{wi})}{\sum_{j=1}^{V} exp(u_{w}^{T}v_{wi} )} j=1Vexp(uwTvwi)exp(uwi1Tvwi)

1.3 cbow原理(忽略词的顺序)

在这里插入图片描述

和上面过程类似,得到v个概率,再通过反向传播,进行梯度下降,得到词向量矩阵,设e1,e2,e3,e4为上下文词,窗口为2 , v c , v j v_c,v_j vc,vj 为中心词向量,则 u 0 = s u m ( e 1 , e 2 , e 3 , e 4 ) u_0=sum(e_1,e_2,e_3,e_4) u0=sum(e1,e2,e3,e4)表示窗口内上下文词向量之和: p ( c ∣ o ) = p(c|o)= p(co)=
e x p ( u 0 T v c ) ∑ j = 1 V e x p ( u 0 T v j ) \frac{exp(u_{0}^{T} v_c)}{\sum_{j=1}^{V} exp(u_{0}^{T}v_j )} j=1Vexp(u0Tvj)exp(u0Tvc)

1.4 word2vec关键技术:层次softmax和负采样

层次softmax:
在这里插入图片描述
在这里插入图片描述

2.previous model

2.1NNLM

在这里插入图片描述

2.2RNNLM

在这里插入图片描述
在这里插入图片描述
参考博客
论文笔记
论文解读

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值