AI模型与UWB定位初探

本文探讨了UWB室内定位技术在高精度需求下的应用,介绍了TOA和TDOA定位原理,以及如何通过深度学习提高定位精度。着重讨论了时钟同步问题,如Chan算法和Taylor算法的改进,以及人工智能在建立拓扑映射和处理多径干扰方面的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI模型与UWB定位初探

背景

在当今数字化时代,技术发展迅速,众多智能领域对定位精度的要求越来越高。在户外环境中,全球导航卫星系统(GNSS)技术可以提供精确的定位服务。然而,由于建筑物和墙壁的阻碍,全球导航卫星系统信号无法直接到达室内,限制了全球导航卫星技术在室内环境中的应用。因此,一些基于定位服务的室内智能应用迫切需要在室内环境中进行精确定位,如机场和大型零售中心。近年来,出现了各种室内定位技术,包括Wi-Fi指纹、蓝牙、UWB(超宽带)、Zigbee 、超声波、音频定位技术等。其中,UWB定位技术因其高精度、低功耗和抗干扰特性而广泛应用于室内定位。已经提出了许多UWB定位算法,例如TOA(到达时间)定位和TDOA(到达时间差)定位,它们依赖于UWB设备基于相关算法进行测距和找到标签位置,无线信号到达角AOA(到达角)定位和基于信号强度RSSI(接收信号强度指示)的指纹匹配定位。然而,由于室内环境的高度复杂性,信号在传输过程中会受到多径、遮挡、噪声干扰和信号衰减等因素的影响,这增加了UWB室内定位的误差,使定位结果无法满足要求。因此,需要开发新的算法来最大限度地减少这些因素对定位的影响。

由于UWB测距更多是在物理层,受设备资源的限制对于视距,多径,布设方式信号衰减等影响因素的处理比较粗糙,在室内的复杂场景下,误差依然较大。如下图所示,为UWB定位误差来源分析。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
深度学习具有强大的模式识别和学习能力,在传感器融合、信号处理、特征提取等多个领域取得了巨大成功。深度学习还可以通过利用其独特的学习能力从信号中学习关键特征来帮助UWB定位。
倘若将UWB定位问题从物理层上升到网络层,将定位节点的测距数据交由云端高性能设备处理一部分,可大大提高定位进度,如下午为一个部署示意图,这其中的每一层都可以作为云端高性能设备,实现端云结合,充分发挥UWB的定位优势
在这里插入图片描述

UWB 定位技术研究现状

经典的算法主要是通过Gezici提出的基于TOA算法能实现其最佳性能,但受限于时钟同步的问题,常常使用TDOA算法。Chin Der Wann(2006)将TDOA方法与AOA混合,然后用卡尔曼滤波削减误差,具体过程为通过到达角辅助提示TDOA的定位精度,最后由卡尔曼滤波削减NLOS误差对最终定位结果的影响 。Chin Der Wann(2011)则提出了一个将测距的算法复杂度与测距精确度平衡的最大似然估计法。Enrique García(2015)搭建的UWB 定位系统通过使用扩展卡尔曼滤波,在NLOS环境下大幅提升定位精度。

UWB定位算法(物理层)

  1. 定位原理
    该技术采用TDOA(Time Difference Of Arrival,到达时间差)原理,利用UWB技术测得定位标签相对于两个不同定位模块之间无线电信号传播的时间差,从而得出定位标签相对于多组定位模块的距离差。根据信号到达两个模块的时间差,则可以确定定位标签位于以这两个模块为焦点的双曲线上。如果有三个以上的模块,则可以建立起多个双曲线方程,这些双曲线方程的交点就是定位标签的二维坐标位置。
    [ ( x − x i ) 2 + ( y − y i ) 2 ] − [ ( x − x j ) 2 + ( y − y j ) 2 ] = Δ d i j 2 \left[\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}\right]-\left[\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}\right]=\Delta d_{i j}{ }^{2} [(xxi)2+(yyi)2][(xxj)2+(yyj)2]=Δdij2
    在这里插入图片描述
    使用TDOA技术不需要定位标签与定位模块之间进行往复通信,只需要定位标签只发射或只接收UWB信号,故能做到更高的定位容量。但是模块之间还是需要精确的时钟同步。
  2. UWB-TDOA模块时钟同步
    在典型的TDOA定位系统中,要让TDOA能够正常的工作,需要所有参与定位计算的模块保持一样的基准时钟,目前同步技术分为有线同步和无线同步两种。有线同步指使用光纤、网线等线缆将定位模块直接相互连接或接入同步控制器实现定位模块之间的同步;无线同步指通过无线电信号实现定位模块之间的同步。通常有线同步精度较无线同步高,但由于有线同步需要额外铺设线缆导致有线同步成本较无线同步高,部署难度加大。
    在这里插入图片描述
    无线时钟同步原理是首先在一个定位区域内选举出一个主节点,由主节点负责周期性的发送携带时钟同步信息的UWB无线报文,属于同一区域内的所有从节点负责接收主节点的时钟同步报文,并根据时钟同步报文中的信息记录从节点与主节点之间的时钟差异,在后续接收到标签的定位广播报文时,从节点在给标签报文打时间戳时,根据之前记录的时钟差异做时钟补偿处理,这样就做到了所有的模块都处在同一基准时钟,保证了TDOA最终计算结果的可靠性。

Chan算法

Taylor算法

人工智能算法

孙晔等(2019)在视距环境下使用经训练后的神经网络模型对TDOA的结果进行解算,效果优于经典的Chan算法,在实时处理的情况下优于Chan算法和Taylor算法。叶晓桐等(2021)通过注意力机制解决UWB定位中的多径和NLOS情况。

人工智能通过UWB的“雷达”,建立测距数据与设备物理拓扑图的映射关系,即拓扑匹配,实现设备在人工智能模型上的位置映射。这是最大难点,需要引入一系列人工智能技术,包括参考模型、大数据比对、模糊匹配、持续学习迭代等。
在这里插入图片描述

卡尔曼滤波算法

BP神经网络算法

LM算法

LSTM算法

定位的应用场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值