如何5分钟内同时画出Nature中的差异折线图+差异柱状图组合图:从原理到应用详解,换成自己数据可重复!...

先来感受下整理好数据格式上传数据后仅需1秒的极速出图流程和一键修改配色功能,各项性能遥遥领先,视频为证,先睹为快:

126e8a2982ebac4040ecf1c1a246433b.gif

  本次复现的图表来源于Nature metabolism上(IF=10.569)题目为“Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity(血管内皮细胞的单细胞分析揭示了肥胖过程中器官特异脆弱性)”中的Figure 4d-线柱组合图。跟着操作,只需要简单的鼠标点点点3步骤,在短暂3分钟内即可轻松复现该图。带统计学意义的折线图和柱状图可以说是实验数据分析最常用的一类图表,大家如果有跟本Nature子刊文章类似的实验设计方案或类似数据格式,可以直接套用该图只需按照平台上示例数据格式直接复制粘贴替换成自己数据直接分析哦!

508a27419871ad9b66cf3fce08a042a2.png

4aa3d3f0bce1bff26b415031c7790e20.png

CNSknowall一比一100%复现文献原图,折线走向和P值均完全相同

复现目标图片介绍

--- ·差异折线图+差异柱状图组合图 · ---

线柱组合图是由折线图和柱状图组合而成,用于展示多维数据,且利用t检验或秩和检验计算并标记数据在不同分类情况下两两之间的差异。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著;秩和检验,也称Mann-Whitney U检验,是一种非参数检验,在不需要假设两个样本空间都为正态分布的情况下,测试它们的分布是否完全相同。其中t检验适用于连续型数据,假设数据近似正态分布,用于比较平均值;秩和检验适用于不满足正态分布假设的数据,用于比较中位数。

该文章首先通过单细胞测序技术分析了正常饮食(chow diet)和西方饮食(WD diet)小鼠的脑、心脏、肺、肾脏、肝脏、内脏脂肪组织(vis AT)和皮下脂肪组织(sub AT)7个主要器官的内皮细胞,发现转录组畸变随着肥胖时间的增长而恶化,并且只能通过饮食干预和减肥来部分缓解。为进一步研究饮食干预如何影响肥胖和内皮细胞表型,作者对三组小鼠(每组4只)饮食进行连续监测:第1组连续6个月进行正常饮食,第2组连续6个月进行西方饮食,第3组连续6个月进行逆转饮食(reversion diet,逆转饮食,是指在前三个月进行西方饮食,后三个月进行正常饮食),左侧折线图显示逆转饮食后(阴影的虚线代表逆转饮食的开始时间),小鼠体重最初减少,后趋于稳定,并稳定在介于纯WD或chow饮食的动物之间的中间水平;右侧差异柱状图显示连续六个月喂养后,逆转饮食小鼠的体脂率同样位于纯WD或chow饮食的动物之间。逆转饮食组和其他两组的体重和体脂率都存在统计学差异,表明逆转饮食无法完全恢复体重和体脂率,即逆转饮食只能部分恢复体重和体脂率。(大家如果有类似的实验设计或有类似格式的实验数据,可以直接套用该图以及该图用到的统计学方法,来比较每组间的差异是否存在统计学意义。)

cba5987b61b6def8cddeb0f1711e8b1c.png

原文 Fig 4d

f131ecf5044c867db4978b6f10bcba3b.png

Fig 4d的数据,三组小鼠每组4只,因此每个时间点的每组都有4个数据。

      详细步骤

带统计学意义的折线图+柱状图

1

登录CNSknowall 

文末点击“阅读原文”直达(或复制链接到浏览器上收藏)进入平台:http://cnsknowall.com/index.html#/HomePage

登录后进入:数据分析➡高阶分析➡差异分析➡线柱组合图

b1e3455d57468663273a0ed4268a2040.png

2

数据下载

从原文下载Source Data数据,原文链接:https://www.nature.com/articles/s42255-022-00674-x

原文提供的Fig 4d的Source Data数据如下:

923f28e33d40adda72d1d0db1397be51.png

原文提供的数据格式为宽数据,需要转换成长数据,可以使用我们平台“基础分析模块-表格与格式-表格格式转换工具”将宽数据一键转成长数据格式,转化后的长数据格式如下(即该图在本平台上的示例数据)(分不清长宽数据格式的请自行补课):

数据一:折线图数据,第一列为分组ID,第二列为变量ID,第三列为变量观测/检测数值,该图为体重测量值。

02b744563adc5f9406150e217f185619.png

数据二:柱状图数据,第一列为分类ID,且分类需要与数据一的分类保持一致,第二列为数值,该图为Body fat percentage。数据二同数据一都是平台上的示例数据,大家可以直接用平台上该图右侧的示例数据进行复现。

514c0bb6d736234e534442c047527c93.png

3

上传数据

  • 参数选择:

根据文章内容,将差异算法设置为“t_test”,配对检验设置为"否",误差棒设置为“标准误”。在实际操作过程中,可根据需求自行选择。

e26d86fd178bfd3e1a29c716a5e05cec.png

数据上传:

根据数据类型,直接将表格上的数据清空后进行复制粘贴替换,将两个表格内的数据全部修改完毕后,点击上传即可(由于示例数据即原文数据转换成长数据后的格式,无需复制粘贴替换可以直接点击上传)。

0918449bb870199d91e0e36a6f9bc7b3.png

上传成功后,页面上方会显示弹窗信息,“已上传成功”。

3930ef367e37aaedf3590d7c6411f2a8.png

点击开始做图后,等待平台运行。

a9fab1dd2bd66ea128b1c28710bd5d31.png

  • 个性化设置:

如下图所示,在"图形设置"➡"图形颜色"中把颜色进行修改,在"图形设置"➡“图标设置"➡”选择起始点“中把阴影起始点设置为21。

98c8cb7620b40622150ec00cda908536.png

结果如下图(上),与原文图(下)对比,可以看到计算结果完全一致,但工具绘图的结果比原始文献相比,多提供了逆转饮食(Rev)与对照饮食组(Chow)的差异结果,可通过修改pdf,将多余部分删除。

cbb91de529562f19a66c5f63be9f4e94.png

  • 结果下载:

本工具有四种图片格式可供下载,可根据需要,自行选择。以下载pdf格式的图片为例,点击“下载图片” ➡ “Download PDF",即可完成下载,下载后的pdf可以进一步编辑,将逆转饮食(Rev)与对照饮食组(Chow)的差异结果删除,即可与原文一样。

6f44b787bf44fc4ad32c6b5b4583a5b3.png

4

图形设置 

除上述个性化设置外,该工具也提供了一些其他个性化设置,如图表设置,标题设置等。

01

图形颜色设置

  • 全网首创的一键随机变色模式,遥遥领先:

c0ea9152a089b927df7d78280354609d.gif

  • 全网最大气的调色板任意自选颜色:

a1bed6aece50e156fb0118321484c8c6.gif

  • 输入精准的颜色参数:

c687131f21522a8b54cf31ed6365a8a2.png

  • 首次将取色器用于医学数据分析,一键复制文献上的配色风格:

c03d3bcbf52855f5d4af7ed1a3fd970d.gif

02

图表设置

在图表设置中,可修改p值的显示形式。

5028c1dfa982d98ca352281753351672.gif

03

坐标轴设置

系统自动以输入数据中第一行作为坐标轴的名称,以数据一第二列列名作为折线图X轴标题,数据一第三列列名作为折线图Y轴标题(左),数据二第二列列名作为柱状图Y轴标题(右)。在坐标轴设置中可分别调整X、Y轴名称的字体及字号等。

574912bfaa52d78a6ac1a29fe14dbc3f.png

END

80944e1a5289c0a5770887259aa99193.png

 点击关注我们,用最短的时间和最高的效率学习更多数据分析方法!

加入我们的官方群咨询平台使用方法,高效学习更多数据分析方法,会晤道友!

a7dfe49f60a09f33dca8e67ab9c935ef.jpeg

‍注册登录CNSknowall后即可无限制任意免费使用

--一次性收藏120个皆可一键出图的高级通用生信工具--

2fb1df7cb92a08be768f22d00b3924e6.png

同时收藏42个柱状图+23个饼图+其余70个各类常用图表

74c04593c6be2a5d4b29011fb3f6e63d.png

写在后面:AI时代已来,您需要非同以往的更强数据分析工具

  CNSknowall (中文:CNS万事通)平台是今年1月份新上线的一款专门针对医学领域的创新型免费在线数据分析云平台,和目前常用的数据分析工具如SPSS、Origin、GraphPad Prsim和R语言相比,CNSknowall在数据上传、配色修改和参数调整等各方面做出了一系列重大创新,各项性能遥遥领先,几乎没有任何学习成本(包括时间成本和金钱成本),甚至优于GPT(毕竟GPT不是专门的数据分析工具)。您只需要简单的套用台提供的固定数据格式复制粘贴替换成自己的数据,鼠标点点点就可以完成CNS级别的高水平图表制作,可以让不擅长或没接触过数据分析的人以最短的时间内快速建立医学数据分析的基本思维,以最快的速度掌握各种数据分析技能,帮助大家在数据分析上节省大量宝贵的时间,从而可以把时间和精力用在更重要的事情比如查阅文献和设计研究思路方案等,提高文章发表速度,减缓毕业焦虑,赋能职业生涯,开启科研天骄之路!

CNSknowall 首页

35228e3f43b08235408d11bf002cb7af.png

很多时候知道自己要画什么图往往比会画什么图更重要

平台包含300个数据分析模块,您可以快速找到能让自己数据价值最大化的分析方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值