MATLAB (信号与系统)实验一:信号的MATLAB表示及信号运算

实验一 信号的MATLAB表示及信号运算

一、实验目的
1、掌握MATLAB的使用;
2、掌握MATLAB生成信号波形;
3、掌握MATLAB分析常用连续信号;
4、掌握信号运算的MATLAB实现。
二、实验内容
在这里插入图片描述

编写程序实现下列常用函数,并显示波形。
1、正弦函数 f(t)=Ksin(wt+a)
2、抽样函数 Sa(t)=sint/t
3、单位阶跃信号 f(t)=u(t)
4、单边指数函数 f(t)=Ke^(-t)u(t)
5、 f(t)=te^(-t)u(t)
6、已知信号,f1(t)=u(t+2)-u(t-2),用MATLAB绘制f1(t)+f2(t)和f1(t)*f2(t)的波形。
7、x(t)=e^(-0.1t)sin(2/3t)u(t)
8、单位冲激信号

代码实现

*题目1:*
t=-8:.01:8;
k=2;w=1;a=pi/6;
f=k*sin(w*t+a);
plot(t,f);grid;xlabel('t');ylabel('f(t)')

结果:
在这里插入图片描述

*题目2:*
clear all;
t=-11:0.1:11;
f=sinc(t/pi);
plot(t,f);grid;xlabel('t');ylabel('Sa(t)');

结果:
在这里插入图片描述

*题目3:*
Heaviside.m
function f=Heaviside(t)
f=(t>0);

t=-5:0.1:5;
f=Heaviside(t);
plot(t,f)

结果:
在这里插入图片描述

*题目4:*
t=-5:0.1:20;
f1=Heaviside(t);
k=1;
f=k.*exp(-1*t).*f1;
plot(t,f)

结果:
在这里插入图片描述

*题目5:*
t=-5:0.1:30;
f1=Heaviside(t);
f2=t.*exp(-1*t).*f1;
plot(t,f2)

结果:
在这里插入图片描述

*题目6:*
t=-5:0.1:5
f1=Heaviside(t+2);
f2=Heaviside(t-2);
f3=f1-f2;
f4=cos(2*pi*t);
s=f3+f4;
w=f3.*f4;
subplot(1,2,1)
plot(t,s)
subplot(1,2,2)
plot(t,w)

结果:
在这里插入图片描述

*题目7:*
t=-10:0.1:70;
f1=Heaviside(t);
f2=exp(-0.1*t).*sin(2/3*t).*f1;
plot(t,f2);grid;xlabel('t');ylabel('f(t)')

结果:
在这里插入图片描述

*题目8:*
clear all;
t0=0;tf=5;dt=0.01;t1=1;
t=[t0:dt:tf];
st=length(t);
n1=floor((t1-t0)/dt);
x1=zeros(1,st);x1(n1)=1/dt;
stairs(t,x1),grid on;axis([0,5,0,22])

结果:
在这里插入图片描述

### 回答1: 假设机器人的动力学方程为M(q)q'' + C(q, q') + G(q) = τ,其中M(q)是质量矩阵,C(q, q')是科里奥利力和离心力矩阵,G(q)是重力矩阵,τ是关节力矩向量。 则可以得到角度变量的运动学方程为q' = f(q, q'),其中f是角度变量的运动学方程。 为了求解角度1对机器人角度2求导,可以根据链式法则,将角度1对机器人的角度2求导转换为角度1对q求导乘以q对q2求导的积。 具体地,可以使用MATLAB的符号计算工具箱来实现: 1. 定义符号变量 syms q1 q2 q3 q1_dot q2_dot q3_dot real 2. 定义动力学方程 M = [m11, m12, m13; m21, m22, m23; m31, m32, m33]; C = [c11, c12, c13; c21, c22, c23; c31, c32, c33]; G = [g1; g2; g3]; tau = [tau1; tau2; tau3]; q = [q1; q2; q3]; q_dot = [q1_dot; q2_dot; q3_dot]; M_q = subs(M, [q1, q2, q3], q); C_q_qdot = subs(C, [q1, q2, q3, q1_dot, q2_dot, q3_dot], [q, q_dot]); G_q = subs(G, [q1, q2, q3], q); dyn_eq = simplify(M_q*q_dot_dot + C_q_qdot + G_q - tau); 3. 定义运动学方程 f = [f1(q1, q2, q3); f2(q1, q2, q3); f3(q1, q2, q3)]; q_dot = simplify(jacobian(f, q)*[q1_dot; q2_dot; q3_dot]); 4. 计算角度1对机器人角度2求导 dq2_dq1 = simplify(diff(q_dot(2), q1)); 其中,dq2_dq1即为角度1对机器人角度2求导。 需要注意的是,以上仅为伪代码,具体的实现需要根据机器人的动力学方程和运动学方程进行修改。 ### 回答2: 使用MATLAB求解角度1对机器人角度2的求导可以通过利用MATLAB中的符号计算工具箱来实现。以下是使用符号计算工具箱的步骤: 1. 定义符号变量:首先,我们将角度1、角度2和角度3定义为符号变量。在MATLAB中,可以使用`sym`函数来创建符号变量。 ```matlab syms angle1 angle2 angle3 ``` 2. 定义动力学方程:根据已知的双足机器人的动力学方程,我们可以将方程定义为符号表达式。 ```matlab eqn = sin(angle1) + cos(angle2) - angle3; ``` 在这个例子中,我们假设双足机器人的动力学方程为sin(angle1) + cos(angle2) - angle3。 3. 求导:使用MATLAB中的`diff`函数对动力学方程进行求导。 ```matlab diff_eqn = diff(eqn, angle2); ``` 这将对方程eqn关于angle2进行求导,并将结果存储在diff_eqn中。 4. 输出结果:最后,我们可以使用MATLAB的`disp`函数来打印求导结果。 ```matlab disp(diff_eqn); ``` 这将在MATLAB命令窗口中打印出角度1对机器人角度2求导的结果。 使用上述步骤,我们可以计算出角度1对机器人角度2求导的MATLAB代码。请注意,这只是一个示例,实际情况可能需要根据具体的动力学方程进行调整。 ### 回答3: 在MATLAB中,可以使用符号运算工具箱(Symbolic Math Toolbox)来求解双足机器人动力学方程中角度1对角度2的导数。以下是求解的步骤: 1. 首先,需要定义角度变量和时间变量,并创建符号变量对象: ```matlab syms q1 q2 q3 t ``` 2. 接着,可以使用这些符号变量来定义机器人动力学方程(假设动力学方程用函数F表示): ```matlab F = F(q1, q2, q3, t); ``` 3. 然后,可以使用diff函数来计算F对q2的导数: ```matlab dF_dq2 = diff(F, q2); ``` 4. 最后,可以将结果储存在变量中,以便进一步使用: ```matlab dF_dq2_value = subs(dF_dq2, {q1, q2, q3, t}, {q1_value, q2_value, q3_value, t_value}); ``` 其中,q1_value、q2_value、q3_value和t_value是具体的数值。 需要注意的是,以上的步骤是示意性的,并假设了存在机器人动力学方程F(q1, q2, q3, t),实际求解中需要根据具体的双足机器人动力学方程进行推导和实现。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值