趋势预测:如何推测核心指标的未来发展趋势?

本文探讨了从数据驱动的业务问题挖掘到未来趋势预测的重要性,介绍了时间序列和回归分析这两种常用的方法,强调了在产品运营中稳定性和数据稳定性对于趋势预测的必要性。作者指导读者如何在Excel中实现趋势预测,以提升业务决策的前瞻性和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在之前的内容中,我们都是尽可能地从有限的数据中去挖掘背后的业务问题和机会点,但数据本身是滞后的,因为一定是产品运营背后“首先”发生了某些事情,“之后”才会产生对应的数据。

需要专栏原数据进行实操的同学,可到“云盘资源分享站”公众号回复“数据化”,即可获取

换言之,当我们费劲巴拉地从数据中找到令人兴奋的关键原因时,其实只不过是事后的“亡羊补牢”和“经验总结”。可是事实上我们做业务的同学,更关心未来的走势可能是什么样的,可否提前部署各种策略以避免风险的发生。

回到专栏的开始,我提过一个问题:今天的 DAU 比昨天跌了 5%,你会怎么分析?然后同学们通过描述性统计、多维分析、相关性分析、方差分析,以及参数估计等把 DAU 变化的原因扒了个底朝天。

这么做原则上可以打 100分 了,但我只会打 90 分,少打 10 分不是怕你骄傲,而是之前的分析方法全都是在分析“历史”。而若能在补充 DAU 在未来走势是继续跌,还是会反弹涨,以及继续跌能跌到什么程度,反弹涨又能涨回来多少,给 leader 或团队一个准确的预判,你将更加与众不同和出类拔萃。

从基于数据做原因分析,到基于数据进行预测未来,这正是从初阶产品运营到高阶产品运营的晋升,要想比别人看得更远、比别人考虑得更超前,就必须要掌握预测未来的技能。

凭什么说,未来可预测?

预测分析是典型的数据挖掘应用,通过分析指标的历史数据,结合合理的算法并完成合理的预测分析,做到提前掌握未来的发展趋势,为产品运营提前评估风险、制定干预策略提供依据。之所以可以“趋势预测”,其原因有以下两点。

1.从历史上看,产品运营是基本稳定的

这里要用一个互联网的灵魂拷问引出上面这个结论:什么是产品?产品是为指定客群提供指定功能或服务的各种实体。

  • 产品从诞生之初其目标客群就是“已指定好的”,即有清晰地目标客群,没有一种产品是服务于各种各样全量人群的;

  • 产品针对指定客群,仅提供这部分客群所感兴趣和需要的功能和服务,即产品的功能与服务是有限的。

PS:没有任何一款产品是先上线,再找客群用户的。

只有客群、功能和服务都长期处于明确、稳定的状态了,那么产品本身的各种指标也会是稳定的。如何正确理解这种稳定性呢?稳定是指在某个历史周期内,产品本身不会有大的变化。

  • 例如微信,2018 年 12 月 21 日更新了 v7.0.0,三年后,直到 2021 年 1 月 6 日 才更新到 v7.0.21;

  • 又例如支付宝,2016 年 12 月 22 日更新 v10.0.0,四年后,直到 2021 年 1 月 23 日 才更新到 v10.2.13。

它们都是在小版本号上的更新,也就是产品的修修补补,并未对产品在主版本号和次版本号上做重大功能的迭代。

基于这种稳定性,我们才能去做趋势预测。**如果产品自身还不稳定,即上线后频繁做各种很大的调整,去做关键指标的趋势预测毫无意义。**因为产品的客群都没稳定下来,今天要打男性用户,明天要打女性用户,今天要做注册,明天要做活跃,在这种“频繁变动”的产品上去做趋势预测是浪费资源、浪费时间。

大约 5 年前团队在做一个行业 B2B 的创新产品,但产品的目标客群,团队内一直争论不休,有人认为要打头部用户、大 V 的,有人认为要做腰部 KOL 的,所以导致产品自身的功能、服务、UI/UX 不停变化。

这时,我们为管理团队做的发展规划分析也就完全没有了意义,其中的用户规模预测也完全失去了它应用的意义。

2.从数据上看,一定历史范围内的数据是稳定的

因为产品本身的客群和服务是稳定的,所以在数据上也会体现出稳定性。但数据的稳定性并不是说关键指标一直不变,而是具备一种非常明显的特征(下文会讲),便于我们去分析。

同时这种数据上的稳定性也容忍可能出现的个别数据波动,因为站在历史上看,个别数据的波动只是“把石头丢进大海造成的涟漪”,这种扰动并不会对整体趋势带来明显影响。

所以,由于产品运营及其数据能保持稳定性,它的未来趋势也是稳定、可预测的;同时,产品运营及其数据的稳定性,也是我们可以去做趋势预测的前提。

趋势预测是定性分析,不是定量分析

在开始下面内容前,需要给你提个醒,打个针,特别说明清楚趋势预测是“定性分析”,而不是“定量分析”。

预测得再准确,也架不住政策、行业、竞品、用户等因素突然变化带来的影响,而这些也是从数据中看不到的。

另外,趋势预测之所以叫“趋势”预测,是因为它能告诉我们未来的大方向、大趋势长什么样子。比如,趋势预测告诉我们未来 30 天的 DAU 可以做到 105 万,然后如果我们就拿 105 万直接去做汇报,显然会被怼回来,但是这个增长到 105 万的趋势却是我们可以参考和制定策略的。

在产品运营中常见的趋势预测方法主要有两种:基于时间序列的趋势预测和基于回归分析的趋势预测。

第一种预测方法:基于时间序列的趋势预测

时间序列,是以时间顺序排列的指标数据。

时间序列预测是根据时间序列数据的发展过程和方向等(即趋势),通过合理的算法来可信地预测未来的发展趋势。

它认为指标的历史数据有一定的延续性,即历史上指标的趋势在未来也会大概率按照趋势继续,同时接受一定程度的指标波动,认为是合理的随机事件,并把这种波动也考虑到未来走势中。所以时间序列预测输出的趋势以及波动性,是和历史数据的趋势与波动性大概率高度一致的。

1.时间序列是什么?

要做基于时间序列的趋势预测,我们只需要做一件事:必须有两列数据,其中一列是时间序列,另一列是该时间序列对应需要的预测数据。

需要注意的是,时间序列预测有且只能有两列数据,也就是说只能针对唯一的一个业务指标做预测。如下图所示。

图片4.png

但是时间序列这里有点要求:

  • 时间可以是任何形式的时间,例如年序列、月序列、日序列、时/分/秒序列都可以;

  • 时间序列必须均匀分布,即时间间隔是等差数列,例如下表。

图片1.png

满足上述条件后,就能看到基于时间序列预测的结果了,如下图所示:

图片5.png

其中蓝色曲线为历史数据,红色曲线为未来趋势。这里红色线有三条,都有很重要的业务意义:

  • 上方的红色曲线为置信上限,即未来趋势不会高过此条曲线;

  • 下方的红色曲线为置信下限,即未来趋势不会低于此条曲线;

  • 置信上限和置信下限之间的区域为置信区间,即未来趋势在置信区间内波动;

  • 中间加粗的红色曲线为趋势线,即未来大概率以此趋势发展。

2.时间序列预测适用场景

时间序列预测适用的场景非常多。在产品运营中,几乎所有指标都可以根据历史数据来完成时间序列的预测。

例如,要制定 2021 年的核心指标时,通常我们会拿 2020 年的历史数据来预测 2021 年的趋势和目标,基于这个预测的初步结果,再结合 leader 的要求做针对性微调。这样 2021 年的核心指标目标既有严谨的预测逻辑,又能满足 leader 的高标准、严要求。

又例如,周期性的汇报或会议是必不可少的,它是非常重要的同步关键信息、分析问题制定打法的机制。一般在这类汇报或会议中,除了同步已有的进展和问题外,还一定要同步下个阶段的趋势,一般用时间序列预测即可。

我的团队每个月会向高级总监汇报产品 4 个核心指标的进展,包括目标达成情况、发现并已解决的问题;同时还会给高级总监预测接下来的趋势,以便高级总监能够提前预知风险并给予必要的支持。特别地,如果趋势呈现持续下降趋势,我们还会进一步给出可能的阻断策略和建议。

从上面的场景,你可能已经感受到,时间序列的预测并不是数据化运营有无均可的辅助手段,而是非常重要和必要的组成部分。

试想,大家在汇报的时候都讲历史的进展和成绩,而你还能给出未来趋势的合理预判,以及可能的策略和建议,对于职场晋升、能力提升都有非常大的帮助。

3.在 Excel 中实现时间序列趋势预测

在 Excel 中,时间序列预测的叫作预测工作表,具体的预测操作流程如下。

第一步:检查数据是否符合要求。

要求数据为两列,第一列必须是时间序列,且间隔均匀,即是连续、等差的时间数据,不能出现缺漏的情况。如果出现缺漏,请补充缺失日期的数据或重新调整时间间隔。

第二步:选中所有数据。

第三步:点击“数据”选项卡,找到“预测工作表”。

Drawing 2.png

第四步:点击“预测工作表”选项卡,弹出时间序列配置窗口。

Drawing 3.png

【什么是季节性?】

季节性是指时间序列中指标的数据在自然时间或符合人类生产活动规律下出现的周期波动,典型的季节性有按周、按月、按季度的变化。

  • 按周的季节性,每周一是 DAU 低谷,然后逐步逐步升高,到周五、周六达到高峰,周日开始回落,周而复始;

  • 按月的季节性,每个月初是业务办理的波峰,然后迅速降至低估,下个月初又在重复;

  • 按季度的季节性,每年第一季度和第三季度是旅游高峰,因为是寒假、春节和暑假。

所以,季节性在产品运营中也可以认为是周期性。一般而言,Excel 的预测工作表可以比较准确地自动发现数据中的周期性,不需要手动设置。不过为了严谨和准确,我们在这个窗口还是多瞥一眼周期性,确认无误后再生成最后的预测图。

第五步:通常 Excel 会自动分析数据的季节性和周期性,并已输出红色的预测线,

检查各项配置无误后,点击“确定”即可。

4.多久的历史数据可以预测多远的未来呢?

这是一个非常好的问题,我先直接给出答案和要求:历史数据必须能够覆盖1~2个完整的周期性波动。

例如,如果产品具备明显的自然周趋势,周一最高,然后持续下降,周日到达最低,那么历史数据至少要有两周的数据,不然Excel没法准确发现其中的趋势。

但是,也不必拿过去20个周的数据来做预测,是因为Excel 预测工作表使用的是指数平滑算法。指数平滑法的核心点是历史上每个数据的权重都不一样,距离预测起点越近的数据权重越高,距离预测起点越远的数据权重越低。

也就是越近期的数据对未来趋势的影响越大,越远期的数据对未来趋势的影响越小。所以它对离预测期较近的数据给予较大的权重,对离预测期较远的数据给予较低的权重。

所以不需要很多历史的数据,因为太过久远的数据其算法权重极低,对未来的影响极小;也不需要预测很远的未来,因为预测的越未来,准确度越差,也无业务意义。

Drawing 4.png

第二种预测方法:基于回归分析的趋势预测

回归分析,是指定量分析两种或两种以上指标间相互依赖关系的分析方法,它支持两个或多个指标间的关系。

这里的“分析多种指标相互依赖的关系”是什么意思呢?我们代入一个场景通俗理解一下。

以短视频为例,一般是以短视频的下发量、收藏量、点赞量、转发量、发布者的等级和粉丝数等指标来分析与在播放量的关系。这个时候不能用时间序列预测,因为有多个指标与时间序列无关,故只能通过回归分析找到上述指标与播放量的关系,继而预测未来播放量的走势,这就是典型的回归分析。

在内容的热点运营中,通常需要能够提前预判在未来短期内可能成为热门或爆款的内容,然后在这些潜在爆款内容爆发前进行人工干预和运营,或流量打压或流量扶持。

所谓的“回归”,你可以理解为让数据“回归”到一个规律中。所以从本质上讲,回归分析就是从大量的数据中寻找到多个事物间的联系、规律,从而对未来的数据进行预测。

1.回归分析适用场景

回归分析是非常实用和成熟的分析方法,适用场景也非常多。

  • 营销活动效果预测

通常营销活动的指标非常多,曝光量、触点数量、目标客群、投放时间、投入成本、活动入口、活动路径等,为了可以充分有效地分析营销活动上线后的效果,可以在活动投放过程中及时监控并实时预测未来走势,可以在活动执行中动态调整活动策略以最大程度提升活动效果。为此收集营销活动的运营指标,并建设多元回归模型以评估活动上线前的可能效果。

  • 腰部 KOL 发展潜力预测

越来越多的平台都把 KOL 作为运营的重要抓手和工具,在头部 KOL 被一抢而空后,腰部 KOL 成了新的运营重点,但要从更大量级的腰部 KOL 中找出有潜力的可不是一件容易的事情。

通过分析过往成功从腰部 KOL 晋升为头部 KOL 的特点,粉丝增长速度、发布内容阅读量、平台活跃度、所在领域、内容生产能力和质量等,建设多元回归模型来预测这些指标与 KOL 粉丝数的关系,以寻找出未来最后潜质成为头部 KOL 的去重点培养和运营,这套打法已是很多 MCN 机构的日常运营手段。

  • 微信公众号阅读量预测

在微信公众号的运营中,在发布前总是希望能够预测发布后的阅读量等数据,继而可以提前优化标题、内容、图片和内容方向。对于一篇推文,发布时的粉丝数、发布时间、文章位置、文章长度、标题长度等都能成为影响用户点击阅读的因素,故而为它们以及阅读量建立回归模型来预测内容发布后可能的阅读量。

2.在 Excel 中实现回归分析趋势预测

在 Excel 中,回归分析叫作趋势线,是图表的附属功能。

我们模拟一个场景,现在有用户的年龄和使用时长的数据,我们希望预测随着年龄的提升,使用时长是否也会提升,如下表所示。

图片2.png

有了数据和场景,我们在 Excel 中实操一下:

第一步:选中所有数据。
Drawing 5.png

第二步:点击“插入”选项卡,选择柱状图。

Drawing 6.png

第三步:在柱状图的数据柱上单击右键,找到“添加趋势线”。

Drawing 7.png

第四步:点击“添加趋势线”,弹出趋势线配置窗口。

Drawing 8.png

第五步:勾选“显示 R 平方值”。

Drawing 9.png

第六步:切换不同的回归算法,选择 R2 接近于 1 的算法。

Drawing 10.png

这里有一个指标 R2。R2是指这条趋势线的拟合程度,一般而言,越接近于 1,拟合效果越好。但是我们一般情况下只用线性或指数,其他算法较少使用,特别是二项式,极易造成过拟合而失去预测的意义。

针对“过拟合”,留给你一个课外作业,尽可能地搜集关于过拟合的资讯,然后我们在留言区或群里互动。特别地,如果你对接的是算法模型团队,这个词汇更要能够理解,不然算法模型上线后出现负向就很麻烦了。

第七步:在趋势线配置窗口找到“向前”、或“前推”,输入预测周期。

Drawing 11.png

上图中就能看到趋势线离开历史数据的范围,那么未来的趋势就如此线所示。

小结

到此为止,数据化运营中最常用的六种分析方法就全部讲完了,希望你能够经常回顾温习,结合自己的工作场景尝试用一用,这样印象才深,才能切身体会到这六种分析方法的力量。

图片3.png


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值