短期电力负荷预测是电力系统安全调度、经济运行的重要依据 , 随着电力系统的市场化 , 负荷预测的精度直接影响到电力系统运行的可靠性、经济性和供电质量。LSTM 为短期电力负荷预测提供了一个新的研究方向。本文将LSTM用于短期电力负荷预测 , 提出基于LSTM 的短期电力负荷预测模型 , 同时建立粒子群模型对 LSTM进行参数优化 , 并以南京某地区的历史负荷数据和气象数据为例进行验证 , 实例验证表明 , PSO-LSTM 模型的预测效果明显提高。
1,提出PSO算法对5维sphere函数的极值寻优结果如图所示:
如图所示为PSO对5维sphere函数极值寻优,从图上可以清晰看出,PSO算法大约在200次迭代时就早早的陷入了局部最优解,最终值约为1;
2, 基于LSTM的短期电力负荷预测。
本文选择的是南京某地区的电力负荷值,每天的数据包括平均温度、降水量、相对湿度、相对湿度、10 分钟风速4 次平均、日极大风风速、日极大风风向、日极大风出现时间、日照时数合计、与以15分钟为单位,一天96个时刻的负荷,共8+96个特征。基于LSTM,本文选择以第n-1天的96个值与第n天的平均温度、降水量、相对湿度、相对湿度、10 分钟风速4 次平均、日极大风风速、日极大风风向、日极大风出现时间、日照时数合计作为输入,以第n天的24个时刻的负荷作为输出,构建8+96输入96输出的LSTM短期电力负荷预测模型。
数据集一共96个样本,选择95个样本作为训练集,剩下1个样本作为测试集,相当于预测最后一天得到的结果如图所示。
PSO-LSTM测试集的mape: 0.04030398741922454 rmse: 3.254871212868774 mad: 2.982307053878904 R2: 0.9385667729662959 ,可见lstm的泛化能力较好。
上述结果说明,pso-lstm确实能在一定程度减小误差;第二,lstm本身泛化能力也不错,即使不用优化也能达到一个不错的结果,经过分析,这与很多因素有关。