基于粒子群PSO优化LSTM的短期负荷预测

文章提出了基于LSTM的短期电力负荷预测模型,并使用粒子群优化算法(PSO)对LSTM参数进行优化。通过南京某地区的电力负荷和气象数据验证,PSO-LSTM模型在预测精度上表现出显著提升,MAPE为0.0403,RMSE为3.25,MAD为2.98,R2为0.9386,显示出良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        短期电力负荷预测是电力系统安全调度、经济运行的重要依据 , 随着电力系统的市场化 , 负荷预测的精度直接影响到电力系统运行的可靠性、经济性和供电质量。LSTM 为短期电力负荷预测提供了一个新的研究方向。本文将LSTM用于短期电力负荷预测 , 提出基于LSTM 的短期电力负荷预测模型 , 同时建立粒子群模型对 LSTM进行参数优化 , 并以南京某地区的历史负荷数据和气象数据为例进行验证 , 实例验证表明 ,  PSO-LSTM 模型的预测效果明显提高。


        1,提出PSO算法对5维sphere函数的极值寻优结果如图所示:

        如图所示为PSO对5维sphere函数极值寻优,从图上可以清晰看出,PSO算法大约在200次迭代时就早早的陷入了局部最优解,最终值约为1;

2, 基于LSTM的短期电力负荷预测。

        本文选择的是南京某地区的电力负荷值,每天的数据包括平均温度、降水量、相对湿度、相对湿度、10 分钟风速4 次平均、日极大风风速、日极大风风向、日极大风出现时间、日照时数合计、与以15分钟为单位,一天96个时刻的负荷,共8+96个特征。基于LSTM,本文选择以第n-1天的96个值与第n天的平均温度、降水量、相对湿度、相对湿度、10 分钟风速4 次平均、日极大风风速、日极大风风向、日极大风出现时间、日照时数合计作为输入,以第n天的24个时刻的负荷作为输出,构建8+96输入96输出的LSTM短期电力负荷预测模型。

 数据集一共96个样本,选择95个样本作为训练集,剩下1个样本作为测试集,相当于预测最后一天得到的结果如图所示。

 PSO-LSTM测试集的mape: 0.04030398741922454  rmse: 3.254871212868774  mad: 2.982307053878904  R2: 0.9385667729662959 ,可见lstm的泛化能力较好。

 上述结果说明,pso-lstm确实能在一定程度减小误差;第二,lstm本身泛化能力也不错,即使不用优化也能达到一个不错的结果,经过分析,这与很多因素有关。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值