菜鸟的GAMES图形学笔记 Lecture 03 Transformation

资料来自
链接: GAMES:101


变换(二维、三维)

放缩、镜像、剪切、旋转

放缩
放缩
放缩

镜像
在这里插入图片描述
在这里插入图片描述
剪切
在这里插入图片描述
在这里插入图片描述
旋转
在这里插入图片描述
非齐次坐标下的旋转矩阵是正交矩阵:
R − θ = [ c o s θ s i n θ − s i n θ c o s θ ] R − θ = R θ T = R θ − 1 R_{-\theta}=\begin{bmatrix}cos\theta & sin\theta \\ -sin\theta & cos\theta\\ \end{bmatrix} \\ R_{-\theta}=R_\theta^T=R_\theta^{-1} Rθ=[cosθsinθsinθcosθ]Rθ=RθT=Rθ1
在这里插入图片描述


齐次坐标

以上行为都是关于x y的线性变换(x’ y’是完全依赖于x y的),如果有x’ y’不依赖于x y的情况呢?(如平移)
因此引入齐次坐标

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
齐次坐标的形式
在这里插入图片描述

二维点、二维向量的齐次坐标
在这里插入图片描述
齐次坐标的代数意义
在这里插入图片描述


几何变换与矩阵乘法的关系

左乘、矩阵乘法的结合律


3维齐次坐标

2维的自然延伸

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值