资料来自
链接: GAMES:101
变换(二维、三维)
放缩、镜像、剪切、旋转
放缩
镜像
剪切
旋转
非齐次坐标下的旋转矩阵是正交矩阵:
R
−
θ
=
[
c
o
s
θ
s
i
n
θ
−
s
i
n
θ
c
o
s
θ
]
R
−
θ
=
R
θ
T
=
R
θ
−
1
R_{-\theta}=\begin{bmatrix}cos\theta & sin\theta \\ -sin\theta & cos\theta\\ \end{bmatrix} \\ R_{-\theta}=R_\theta^T=R_\theta^{-1}
R−θ=[cosθ−sinθsinθcosθ]R−θ=RθT=Rθ−1
齐次坐标
以上行为都是关于x y的线性变换(x’ y’是完全依赖于x y的),如果有x’ y’不依赖于x y的情况呢?(如平移)
因此引入齐次坐标
齐次坐标的形式
二维点、二维向量的齐次坐标
齐次坐标的代数意义
几何变换与矩阵乘法的关系
左乘、矩阵乘法的结合律
3维齐次坐标
2维的自然延伸