首先要明确这几个都是超参数,也就是要人为的调。
一、概念
1、Epoch
one epoch:所有的训练样本完成一次Forword运算以及一次BP运算。
epoch:使用训练集的全部数据对模型进行一次完整训练。
2、Batch Size
batch:在一个epoch里,把训练数据分成几份,一份就叫做一个batch。
batch size:1个batch包含的样本的数目,也就是每份里样本的个数。
3、iterations
所谓iterations就是完成一次epoch所需的batch个数。
二、Epoch、Batch Size出现的原因
1、Epoch
其实epoch好理解,就是说我们在训练模型的时候要把train data一遍又一遍的放入模型中来更新我们的参数,使得模型的参数合理。这个就像你小时候手里拿着面包,但是你不知道是什么东西,你问了你妈妈一次,但是你没记住,又问了一次,还没记住,问了100次,终于记住了。但是你问了1000次,然后看到别的东西,你都认为是面包,这个就是epoch太大,过拟合了。
2、Batch Size
下面看看不好理解的Batch Size。在此之前先看看几种深度学习的优化算法