对epoch,batch size, iterations的理解

本文详细解析了深度学习中的Epoch、Batch Size和Iterations三个关键概念,阐述了它们出现的原因,并探讨如何选择合适的值以平衡计算效率与模型性能。文中提到,Epoch的选取应以避免欠拟合和过拟合为主,Batch Size的选择则需要在计算资源与泛化能力之间取得平衡。此外,还讨论了不同Batch Size对寻找全局最优解的影响。
摘要由CSDN通过智能技术生成

首先要明确这几个都是超参数,也就是要人为的调。

一、概念

1、Epoch

one epoch:所有的训练样本完成一次Forword运算以及一次BP运算。
epoch:使用训练集的全部数据对模型进行一次完整训练。

2、Batch Size

batch:在一个epoch里,把训练数据分成几份,一份就叫做一个batch。
batch size:1个batch包含的样本的数目,也就是每份里样本的个数。

3、iterations

所谓iterations就是完成一次epoch所需的batch个数。

二、Epoch、Batch Size出现的原因

1、Epoch

其实epoch好理解,就是说我们在训练模型的时候要把train data一遍又一遍的放入模型中来更新我们的参数,使得模型的参数合理。这个就像你小时候手里拿着面包,但是你不知道是什么东西,你问了你妈妈一次,但是你没记住,又问了一次,还没记住,问了100次,终于记住了。但是你问了1000次,然后看到别的东西,你都认为是面包,这个就是epoch太大,过拟合了。

2、Batch Size

下面看看不好理解的Batch Size。在此之前先看看几种深度学习的优化算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值