微积分-积分应用5.2(体积)

在尝试找到一个固体的体积时,我们面对的问题与寻找面积时相同。我们对体积的概念有直观的理解,但我们必须通过使用微积分来精确定义体积。

我们从一种简单类型的固体——称为柱体(或更准确地说,直柱体)——开始。如图1(a)所示,柱体由一个称为底面的平面区域 B 1 B_1 B1 和一个平行平面中的全等区域 B 2 B_2 B2 所界定。柱体由所有垂直于底面并将 B 1 B_1 B1 B 2 B_2 B2 连接的线段上的点组成。如果底面的面积为 A A A 且柱体的高度(即从 B 1 B_1 B1 B 2 B_2 B2 的距离)为 h h h,那么柱体的体积 V V V 定义为

V = A h V = Ah V=Ah

特别地,如果底面是半径为 r r r 的圆,那么该柱体是一个圆柱体,其体积为 V = π r 2 h V = \pi r^2 h V=πr2h(见图1(b))。如果底面是一个长为 l l l 且宽为 w w w 的矩形,那么该柱体是一个矩形盒(也称为矩形平行六面体),其体积为 V = l w h V = lwh V=lwh(见图1(c))。

在这里插入图片描述

对于不是柱体的固体 S S S,我们首先将 S S S “切割”成若干部分,并将每一部分近似为一个柱体。通过将这些柱体的体积相加,我们估算出 S S S 的体积。通过一种极限过程,当部分的数量变得足够大时,我们可以得到 S S S 的精确体积。

我们从用一个平面与 S S S 相交开始,得到一个称为 S S S 的截面的平面区域。设 A ( x ) A(x) A(x) S S S 在与 x x x 轴垂直并通过点 x x x 的平面 P x P_x Px 中的截面积,其中 a ≤ x ≤ b a \leq x \leq b axb(见图2)。可以想象用刀沿着 x x x 处切开 S S S,并计算这一切片的面积。截面积 A ( x ) A(x) A(x) 会随着 x x x a a a b b b 的变化而变化。

在这里插入图片描述

我们通过使用平面 P x 1 , P x 2 , … P_{x_1}, P_{x_2}, \dots Px1,Px2, S S S 切成 n n n 个宽度相等的“薄片” Δ x \Delta x Δx(可以想象成切面包)。如果我们在区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 中选择采样点 x i ∗ x_i^* xi,那么我们可以用一个底面积为 A ( x i ∗ ) A(x_i^*) A(xi) 且“高度”为 Δ x \Delta x Δx 的柱体来近似第 i i i 个薄片 S i S_i Si(即 S S S 在平面 P x i − 1 P_{x_{i-1}} Pxi1 P x i P_{x_i} Pxi 之间的部分)。(见图3)

在这里插入图片描述

这个柱体的体积是 A ( x i ∗ ) Δ x A(x_i^*) \Delta x A(xi)Δx,因此,第 i i i 个薄片 S i S_i Si 的体积近似为

V ( S i ) ≈ A ( x i ∗ ) Δ x V(S_i) \approx A(x_i^*) \Delta x V(Si)A(xi)Δx

将这些薄片的体积相加,我们可以得到总体积的近似值(即我们直观理解的体积):

V ≈ ∑ i = 1 n A ( x i ∗ ) Δ x V \approx \sum_{i=1}^{n} A(x_i^*) \Delta x Vi=1nA(xi)Δx

这种近似随着 n → ∞ n \rightarrow \infty n 而变得越来越精确。(可以想象这些切片变得越来越薄。)因此,我们将体积定义为当 n → ∞ n \rightarrow \infty n 时这些和的极限。但我们认识到,这个黎曼和的极限是一个定积分,因此我们得到了如下定义。

体积的定义 S S S 是位于 x = a x = a x=a x = b x = b x=b 之间的固体。如果 S S S 在平面 P x P_x Px 上的截面积 A ( x ) A(x) A(x) 是通过 x x x 并垂直于 x x x 轴得到的,其中 A A A 是一个连续函数,那么 S S S体积 V V V
V = lim ⁡ n → ∞ ∑ i = 1 n A ( x i ∗ ) Δ x = ∫ a b A ( x )   d x V = \lim_{{n \to \infty}} \sum_{{i=1}}^n A(x_i^*) \Delta x = \int_a^b A(x) \, dx V=nlimi=1nA(xi)Δx=abA(x)dx

当我们使用体积公式 V = ∫ a b A ( x )   d x V = \int_a^b A(x) \, dx V=abA(x)dx 时,重要的是要记住 A ( x ) A(x) A(x) 是通过 x x x 垂直于 x x x 轴切割得到的截面面积。

注意,对于一个柱体,截面积是恒定的: A ( x ) = A A(x) = A A(x)=A 对所有的 x x x 都成立。因此,我们的体积定义给出 V = ∫ a b A   d x = A ( b − a ) V = \int_a^b A \, dx = A(b - a) V=abAdx=A(ba);这与公式 V = A h V = Ah V=Ah 一致。

例1 证明半径为 r r r 的球的体积为 V = 4 3 π r 3 V = \frac{4}{3}\pi r^3 V=34πr3


如果我们将球放置在其中心位于原点的位置,那么平面 P x P_x Px 将球截成一个圆,其半径(根据勾股定理)为 y = r 2 − x 2 y = \sqrt{r^2 - x^2} y=r2x2 (见图4)。因此截面积为
在这里插入图片描述

A ( x ) = π y 2 = π ( r 2 − x 2 ) A(x) = \pi y^2 = \pi (r^2 - x^2) A(x)=πy2=π(r2x2)

使用体积的定义,其中 a = − r a = -r a=r b = r b = r b=r,我们有

V = ∫ − r r A ( x )   d x = ∫ − r r π ( r 2 − x 2 )   d x V = \int_{-r}^{r} A(x) \, dx = \int_{-r}^{r} \pi (r^2 - x^2) \, dx V=rrA(x)dx=rrπ(r2x2)dx

由于被积函数是偶函数,因此

V = 2 π ∫ 0 r ( r 2 − x 2 )   d x V = 2\pi \int_{0}^{r} (r^2 - x^2) \, dx V=2π0r(r2x2)dx

接着进行积分

V = 2 π [ r 2 x − x 3 3 ] 0 r = 2 π ( r 3 − r 3 3 ) = 4 3 π r 3 V = 2\pi \left[ r^2x - \frac{x^3}{3} \right]_0^r = 2\pi \left( r^3 - \frac{r^3}{3} \right) = \frac{4}{3}\pi r^3 V=2π[r2x3x3]0r=2π(r33r3)=34πr3

因此,球的体积为 V = 4 3 π r 3 V = \frac{4}{3}\pi r^3 V=34πr3

图5展示了当固体是半径为 r = 1 r = 1 r=1 的球时,体积的定义。根据例子1的结果,我们知道球的体积为 4 3 π \frac{4}{3}\pi 34π,约为4.18879。这里的薄片是圆柱体或圆盘,图5的三部分展示了黎曼和的几何解释
在这里插入图片描述

∑ i = 1 n A ( x ˉ i ) Δ x = ∑ i = 1 n π ( 1 2 − x ˉ i 2 ) Δ x \sum_{i=1}^{n} A(\bar{x}_i) \Delta x = \sum_{i=1}^{n} \pi (1^2 - \bar{x}_i^2) \Delta x i=1nA(xˉi)Δx=i=1nπ(12xˉi2)Δx

n = 5 n = 5 n=5 10 10 10 20 20 20 时,如果我们选择样本点 x i ∗ x_i^* xi 为中点 x ˉ i \bar{x}_i xˉi。注意,随着近似圆柱的数量增加,相应的黎曼和越来越接近真实体积。

例2 求由曲线 y = x y = \sqrt{x} y=x 下方区域从 0 0 0 1 1 1 围绕 x x x 轴旋转得到的立体体积。通过绘制一个典型的近似圆柱体来说明体积的定义。


该区域如图6(a)所示。如果我们围绕x轴旋转,得到如图6(b)所示的立体。当我们通过点 x x x 切开时,得到一个半径为 x \sqrt{x} x 的圆盘。这个横截面的面积为:
在这里插入图片描述

A ( x ) = π ( x ) 2 = π x A(x) = \pi (\sqrt{x})^2 = \pi x A(x)=π(x )2=πx
近似圆柱体(一个厚度为 Δ x \Delta x Δx 的圆盘)的体积为:
A ( x ) Δ x = π x Δ x A(x) \Delta x = \pi x \Delta x A(x)Δx=πxΔx

该立体位于 x = 0 x = 0 x=0 x = 1 x = 1 x=1 之间,因此其体积为:
V = ∫ 0 1 A ( x ) d x = ∫ 0 1 π x d x = π [ x 2 2 ] 0 1 = π 2 V = \int_{0}^{1} A(x) dx = \int_{0}^{1} \pi x dx = \pi \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{\pi}{2} V=01A(x)dx=01πxdx=π[2x2]01=2π

例3 求由曲线 y = x 3 y = x^3 y=x3 y = 8 y = 8 y=8 x = 0 x = 0 x=0 围成的区域绕 y y y 轴旋转得到的立体的体积。


该区域如图7(a)所示,旋转得到的立体如图7(b)所示。因为该区域绕 y y y 轴旋转,故可以沿与 y y y 轴垂直的方向切割(得到圆形横截面),因此可以关于 y y y 积分。如果我们在高度 y y y 处切割,得到一个半径为 x x x 的圆盘,其中 x = y 3 x = \sqrt[3]{y} x=3y 。因此通过 y y y 的横截面积为:
在这里插入图片描述

A ( y ) = π x 2 = π ( y 3 ) 2 = π y 2 / 3 A(y) = \pi x^2 = \pi (\sqrt[3]{y})^2 = \pi y^{2/3} A(y)=πx2=π(3y )2=πy2/3
图7(b)所示的近似圆柱体的体积为:
A ( y ) Δ y = π y 2 / 3 Δ y A(y) \Delta y = \pi y^{2/3} \Delta y A(y)Δy=πy2/3Δy

由于该立体位于 y = 0 y = 0 y=0 y = 8 y = 8 y=8 之间,因此其体积为:
V = ∫ 0 8 A ( y )   d y = ∫ 0 8 π y 2 / 3   d y = π [ 3 5 y 5 / 3 ] 0 8 = 96 π 5 V = \int_{0}^{8} A(y) \, dy = \int_{0}^{8} \pi y^{2/3} \, dy = \pi \left[\frac{3}{5} y^{5/3}\right]_{0}^{8} = \frac{96\pi}{5} V=08A(y)dy=08πy2/3dy=π[53y5/3]08=596π

例4 由曲线 y = x y = x y=x y = x 2 y = x^2 y=x2 围成的区域 R \mathcal{R} R 围绕 x x x 轴旋转。求所得到的立体体积。


曲线 y = x y = x y=x y = x 2 y = x^2 y=x2 在点 ( 0 , 0 ) (0, 0) (0,0) ( 1 , 1 ) (1, 1) (1,1) 相交。它们之间的区域、旋转体和垂直于 x x x 轴的截面如图8所示。平面 P x P_x Px 中的截面形状是一个环(或圆环),其内半径为 x 2 x^2 x2,外半径为 x x x,因此我们通过从外圆的面积中减去内圆的面积来找到横截面积:
在这里插入图片描述

A ( x ) = π x 2 − π ( x 2 ) 2 = π ( x 2 − x 4 ) A(x) = \pi x^2 - \pi (x^2)^2 = \pi (x^2 - x^4) A(x)=πx2π(x2)2=π(x2x4)
因此我们有:
V = ∫ 0 1 A ( x )   d x = ∫ 0 1 π ( x 2 − x 4 )   d x = π [ x 3 3 − x 5 5 ] 0 1 = 2 π 15 \begin{align*} V &= \int_{0}^{1} A(x) \, dx = \int_{0}^{1} \pi (x^2 - x^4) \, dx\\ &= \pi \left[\frac{x^3}{3} - \frac{x^5}{5}\right]_{0}^{1} = \frac{2\pi}{15} \end{align*} V=01A(x)dx=01π(x2x4)dx=π[3x35x5]01=152π

例5 求将例4中的区域绕直线 y = 2 y = 2 y=2 旋转得到的立体的体积。


该立体及其横截面如图9所示。横截面仍然是一个圆环,但这次内半径为 2 − x 2 - x 2x,外半径为 2 − x 2 2 - x^2 2x2
在这里插入图片描述

横截面积为:
A ( x ) = π ( 2 − x 2 ) 2 − π ( 2 − x ) 2 A(x) = \pi (2 - x^2)^2 - \pi (2 - x)^2 A(x)=π(2x2)2π(2x)2
因此,立体 S S S 的体积为:
V = ∫ 0 1 A ( x )   d x = π ∫ 0 1 [ ( 2 − x 2 ) 2 − ( 2 − x ) 2 ]   d x = π ∫ 0 1 ( x 4 − 5 x 2 + 4 x )   d x = π [ x 5 5 − 5 x 3 3 + 4 x 2 2 ] 0 1 = 8 π 15 \begin{align*} V &= \int_{0}^{1} A(x) \, dx\\ &= \pi \int_{0}^{1} [(2 - x^2)^2 - (2 - x)^2] \, dx\\ &= \pi \int_{0}^{1} (x^4 - 5x^2 + 4x) \, dx\\ &= \pi \left[\frac{x^5}{5} - 5\frac{x^3}{3} + 4\frac{x^2}{2}\right]_{0}^{1} = \frac{8\pi}{15} \end{align*} V=01A(x)dx=π01[(2x2)2(2x)2]dx=π01(x45x2+4x)dx=π[5x553x3+42x2]01=158π

固体1到5的例子统称为旋转体,因为它们是通过绕某条直线旋转区域而获得的。通常,我们通过以下基本定义公式来计算旋转体的体积:

V = ∫ a b A ( x )   d x 或 V = ∫ c d A ( y )   d y V = \int_a^b A(x) \, dx \quad \text{或} \quad V = \int_c^d A(y) \, dy V=abA(x)dxV=cdA(y)dy

其中, A ( x ) A(x) A(x) A ( y ) A(y) A(y) 是横截面积,计算方法如下:

  • 如果横截面是一个圆盘(如例子1-3),我们找到圆盘的半径(以 x x x y y y 表示),并使用公式

A = π ( 半径 ) 2 A = \pi (\text{半径})^2 A=π(半径)2

  • 如果横截面是一个垫圈(如例子4和5),我们根据图示(如图8、9和10)找到内半径 r in r_{\text{in}} rin 和外半径 r out r_{\text{out}} rout,并通过从外圆盘的面积中减去内圆盘的面积来计算垫圈的面积:

A = π ( 外半径 ) 2 − π ( 内半径 ) 2 A = \pi (\text{外半径})^2 - \pi (\text{内半径})^2 A=π(外半径)2π(内半径)2

图10展示了这一过程的进一步说明。
在这里插入图片描述

例6 找到通过绕 x = − 1 x = -1 x=1 线旋转例4中的区域所获得的固体的体积。


图11展示了一个水平横截面。它是一个垫圈,内半径为 1 + y 1 + y 1+y,外半径为 1 + y 1 + \sqrt{y} 1+y ,因此横截面积为:
在这里插入图片描述

A ( y ) = π ( 外半径 ) 2 − π ( 内半径 ) 2 = π ( 1 + y ) 2 − π ( 1 + y ) 2 \begin{align*} A(y) &= \pi (\text{外半径})^2 - \pi (\text{内半径})^2\\ &= \pi (1 + \sqrt{y})^2 - \pi (1 + y)^2 \end{align*} A(y)=π(外半径)2π(内半径)2=π(1+y )2π(1+y)2

体积为:

V = ∫ 0 1 A ( y )   d y = π ∫ 0 1 [ ( 1 + y ) 2 − ( 1 + y ) 2 ]   d y = π ∫ 0 1 ( 2 y 1 / 2 − y − y 2 )   d y = π [ 4 y 3 / 2 3 − y 2 2 − y 3 3 ] 0 1 = π 2 \begin{align*} V &= \int_0^1 A(y) \, dy = \pi \int_0^1 \left[ (1 + \sqrt{y})^2 - (1 + y)^2 \right] \, dy\\ &= \pi \int_0^1 \left( 2y^{1/2} - y - y^2 \right) \, dy = \pi \left[ \frac{4y^{3/2}}{3} - \frac{y^2}{2} - \frac{y^3}{3} \right]_0^1 = \frac{\pi}{2} \end{align*} V=01A(y)dy=π01[(1+y )2(1+y)2]dy=π01(2y1/2yy2)dy=π[34y3/22y23y3]01=2π

图11给出了上述计算的示意图。

例7 图12展示了一个以半径为1的圆形底面为基础的固体。与底面垂直的平行横截面为等边三角形。求该固体的体积。


我们以圆为 x 2 + y 2 = 1 x^2 + y^2 = 1 x2+y2=1。该固体的底面及从原点到 x x x 处的典型横截面如图13所示。

由于点 B B B 位于圆上,我们有 y = 1 − x 2 y = \sqrt{1 - x^2} y=1x2 ,因此三角形 A B C ABC ABC 的底边长度为

∣ A B ∣ = 2 y = 2 1 − x 2 |AB| = 2y = 2\sqrt{1 - x^2} AB=2y=21x2

由于该三角形为等边三角形,我们从图13(c)中可以看出其高为

3 y = 3 1 − x 2 \sqrt{3}y = \sqrt{3}\sqrt{1 - x^2} 3 y=3 1x2

因此横截面积为

A ( x ) = 1 2 × 2 1 − x 2 × 3 1 − x 2 = 3 ( 1 − x 2 ) A(x) = \frac{1}{2} \times 2\sqrt{1 - x^2} \times \sqrt{3}\sqrt{1 - x^2} = \sqrt{3}(1 - x^2) A(x)=21×21x2 ×3 1x2 =3 (1x2)

该固体的体积为

V = ∫ − 1 1 A ( x )   d x = ∫ − 1 1 3 ( 1 − x 2 )   d x = 2 ∫ 0 1 3 ( 1 − x 2 )   d x = 2 3 [ x − x 3 3 ] 0 1 = 4 3 3 \begin{align*} V &= \int_{-1}^1 A(x) \, dx = \int_{-1}^1 \sqrt{3}(1 - x^2) \, dx\\ &= 2\int_0^1 \sqrt{3}(1 - x^2) \, dx = 2\sqrt{3}\left[ x - \frac{x^3}{3} \right]_0^1 = \frac{4\sqrt{3}}{3} \end{align*} V=11A(x)dx=113 (1x2)dx=2013 (1x2)dx=23 [x3x3]01=343

例8 求一个底面为边长为 L L L 的正方形,高为 h h h 的金字塔的体积。


我们将原点 O O O 放置在金字塔的顶点,x轴沿其中央轴线延伸,如图14所示。通过任意点 P P P,它穿过 x x x 处并垂直于 x x x 轴与金字塔相交,形成边长为 s s s 的正方形横截面。我们可以通过图15中的相似三角形表达 s s s x x x 的关系:
在这里插入图片描述

x h = s / 2 L / 2 = s L \frac{x}{h} = \frac{s/2}{L/2} = \frac{s}{L} hx=L/2s/2=Ls

因此 s = L x / h s = Lx/h s=Lx/h。[另一种方法是观察到直线 O P OP OP 的斜率为 L / ( 2 h ) L/(2h) L/(2h),因此其方程为 y = L x / ( 2 h ) y = Lx/(2h) y=Lx/(2h)]。因此横截面积为

A ( x ) = s 2 = L 2 h 2 x 2 A(x) = s^2 = \frac{L^2}{h^2} x^2 A(x)=s2=h2L2x2

体积为

V = ∫ 0 h A ( x ) d x = ∫ 0 h L 2 h 2 x 2 d x = L 2 h 2 ∫ 0 h x 2 d x = L 2 h 2 [ x 3 3 ] 0 h = L 2 h 3 V = \int_0^h A(x) dx = \int_0^h \frac{L^2}{h^2} x^2 dx = \frac{L^2}{h^2} \int_0^h x^2 dx = \frac{L^2}{h^2} \left[\frac{x^3}{3}\right]_0^h = \frac{L^2h}{3} V=0hA(x)dx=0hh2L2x2dx=h2L20hx2dx=h2L2[3x3]0h=3L2h

注意 我们在例8中并不需要将金字塔的顶点放在原点。我们这样做只是为了使方程简单化。如果我们将底面的中心放置在原点,并将顶点放在y轴的正方向,如图16所示,你可以验证得到的积分是

V = ∫ 0 h L 2 h 2 ( h − y ) 2 d y = L 2 h 3 V = \int_0^h \frac{L^2}{h^2} (h - y)^2 dy = \frac{L^2h}{3} V=0hh2L2(hy)2dy=3L2h
在这里插入图片描述
例9 一个楔形体从半径为4的圆柱体中由两个平面切割而成。一个平面垂直于圆柱体的轴线。另一个平面沿圆柱体直径的30°角与第一个平面相交。求楔形体的体积。


如果我们将 x x x 轴放置在平面相交的直径上,那么该固体的底面是一个方程为 y = 16 − x 2 y = \sqrt{16 - x^2} y=16x2 的半圆,其中 − 4 ≤ x ≤ 4 -4 \leq x \leq 4 4x4。如图17所示,垂直于 x x x 轴且距离原点 x x x 处的横截面是一个三角形 A B C ABC ABC,其中 ∣ B C ∣ = y tan ⁡ 3 0 ∘ = 16 − x 2 3 |BC| = y \tan 30^\circ = \frac{\sqrt{16 - x^2}}{\sqrt{3}} BC=ytan30=3 16x2 。因此横截面积为

A ( x ) = 1 2 × 16 − x 2 × 1 3 × 16 − x 2 = 16 − x 2 2 3 A(x) = \frac{1}{2} \times \sqrt{16 - x^2} \times \frac{1}{\sqrt{3}} \times \sqrt{16 - x^2} = \frac{16 - x^2}{2\sqrt{3}} A(x)=21×16x2 ×3 1×16x2 =23 16x2

体积为

V = ∫ − 4 4 A ( x ) d x = 1 3 ∫ − 4 4 16 − x 2 2 d x = 1 3 [ 16 x − x 3 3 ] − 4 4 = 128 3 3 \begin{align*} V &= \int_{-4}^{4} A(x) dx = \frac{1}{\sqrt{3}} \int_{-4}^{4} \frac{16 - x^2}{2} dx \\ &= \frac{1}{\sqrt{3}} \left[ 16x - \frac{x^3}{3} \right]_{-4}^{4}\\ &= \frac{128}{3\sqrt{3}} \end{align*} V=44A(x)dx=3 144216x2dx=3 1[16x3x3]44=33 128

  • 8
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值