mmdetection之config文件

目录

1. config配置文件命名规则

2. config 文件概述

3.config 类

3.1 读取配置文件

3.2 修改配置参数

3.3使用中间变量

3.4 打印配置文件


1. 官方文档--config文件教程

2. 知乎--MMCV核心组件Config


1. config配置文件命名规则

        MMDetection已经实现的配置文件都位于./configs文件夹下,配置文件都按照统一的规则命名,具体段的含义可以去官方文档自行查阅。

#命名规则
{model}_[model setting]_{backbone}_{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_{schedule}_{dataset}

#其中各个字段的含义

  • {model}: 模型种类,例如 faster_rcnnmask_rcnn 等。

  • [model setting]: 特定的模型,例如 htc 中的without_semantic, reppoints 中的 moment 等。

  • {backbone}: 主干网络种类例如 r50 (ResNet-50), x101 (ResNeXt-101) 等。

  • {neck}: Neck 模型的种类包括 fpn, pafpn, nasfpn, c4 等。

  • [norm_setting]: 默认使用 bn (Batch Normalization),其他指定可以有 gn (Group Normalization), syncbn (Synchronized Batch Normalization) 等。 gn-head/gn-neck 表示 GN 仅应用于网络的 Head 或 Neck, gn-all 表示 GN 用于整个模型, 例如主干网络、Neck 和 Head。

  • [misc]: 模型中各式各样的设置/插件,例如 dconv、 gcb、 attention、albu、 mstrain 等。

  • [gpu x batch_per_gpu]:GPU 数量和每个 GPU 的样本数,默认使用 8x2。

  • {schedule}: 训练方案,选项是 1x、 2x、 20e 等。1x 和 2x 分别代表 12 epoch 和 24 epoch,20e 在级联模型中使用,表示 20 epoch。对于 1x/2x,初始学习率在第 8/16 和第 11/22 epoch 衰减 10 倍;对于 20e ,初始学习率在第 16 和第 19 epoch 衰减 10 倍。

  • {dataset}:数据集,例如 coco、 cityscapes、 voc_0712、 wider_face 等。

        其中大括号表示必选,中括号表示可选。

        这些配置文件都是继承原始配置文件得到的,原始配置文件位于./configs/_base_文件夹下,有4个基本组件类型,分别是数据集(datasets)、模型(models)、训练策略(schedules)和运行时的默认配置(default_runtime)。

        一般来说,当我们新建一个配置文件时,需要从上述四个组件中分别继承一个原始配置文件,然后根据自己需要进行调整。当然,如果你是在构建一个与任何现有方法都不共享结构的全新方法,也可以直接新建,不继承任何原始配置文件。

2. config 文件概述

        config是最重要的,基本上包含了所有的配置文件。
        当我们打开mask_rcnn_r101_fpn_2x_coco.py时,你会发现它索引了其他的字段,config中包含了很多的互相引用。其实MMDetection中配置文件是通过继承 + 修改的方式完成用户自定义配置文件的。配置文件开头的_base_ = list()表示你需要继承的配置文件,然后通过重写的方式完成对应属性的修改

        配置文件由一串字典dict和变量的定义组成,经由Config.fromfile(filepath)函数加载后会返回一个Config类型的变量(MMCV的一个数据结构),然后MMDetection框架就能根据这个Config调用相关的build_detector()方法构建对应的模块。
        具体地,build_detector()方法首先会根据字典中的type找到对应的类(Class),这个类的类名就是type字符串的值,且这个类一定是事先注册(Registry) 好的,MMDetection能够根据type值查询到具体的类,否则就会报错。比如在下面配置文件中,model的type值为mask_rcnn,我们可以在./mmdet/models/detectors/mask_rcnn.py中找到定义。

   build_detector()函数的作用就是根据dict中的type找到对应的类,然后使用dict中传入的参数来对类进行初始化操作,并返回这个类的句柄。

# 下面两行调用是等价的
model = build_detector(Config{type='mask_rcnn', backbone=xxx, neck=xxx, bbox_head=xxx})
model = mask_rcnn(backbone=xxx, neck=xxx, bbox_head=xxx)

        然后配置文件中的dict是可以嵌套的,比如说model的backbone属性是type='ResNet'一个字典,同理我们也可以在./mmdet/models/backbones/resnet.py中找到ResNet类的定义,并且字典的键值和构造函数匹配。

        下 边是mask_rcnn_r101_fpn_2x_coco.py   的配置文件信息描述;

1. 模型配置

model = dict(
1.1 # 检测器(detector)名称
    type='MaskRCNN',  

1.2# 主干网络的配置文件
    backbone=dict(  
        type='ResNet',  # 主干网络的类别,可用选项请参考 .mmdet/models/backbones/resnet.py
        depth=50,  # 主干网络的深度,对于 ResNet 和 ResNext 通常设置为 50 或 101。
        num_stages=4,  # 主干网络状态(stages)的数目,产生的特征图作为后续的 head 的输入。
        out_indices=(0, 1, 2, 3),  # 每个状态产生的特征图输出的索引。
        frozen_stages=1,  # 第一个状态的权重被冻结
        norm_cfg=dict(  # 归一化层(norm layer)的配置项。
            type='BN',  # 归一化层的类别,通常是 BN 或 GN。
            requires_grad=True),  # 是否训练归一化里的 gamma 和 beta。
        norm_eval=True,  # 是否冻结 BN 里的统计项。
        style='pytorch',  # 主干网络的风格,'pytorch' 意思是步长为2的层为 3x3 卷积, 'caffe' 意思是步长为2的层为 1x1 卷积。
       init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),  # 加载通过 ImageNet 预训练的模型

1.3 # 检测器的 neck 是 FPN,我们同样支持 'NASFPN', 'PAFPN' 等,更多细节可以参考        ./mmdet/models/necks/fpn.py#L10。
    neck=dict(
        type='FPN',  
        in_channels=[256, 512, 1024, 2048],  # 输入通道数,这与主干网络的输出通道一致
        out_channels=256,  # 金字塔特征图每一层的输出通道
        num_outs=5),  # 输出的范围(scales)
    rpn_head=dict(
        type='RPNHead',  # RPN_head 的类型是 'RPNHead', 我们也支持 'GARPNHead' 等,更多细节可以参考 ./mmdet/models/dense_heads/rpn_head.py#L12。
        in_channels=256,  # 每个输入特征图的输入通道,这与 neck 的输出通道一致。
        feat_channels=256,  # head 卷积层的特征通道。
        anchor_generator=dict(  # 锚点(Anchor)生成器的配置。
            type='AnchorGenerator',  # 大多是方法使用 AnchorGenerator 作为锚点生成器, SSD 检测器使用 `SSDAnchorGenerator`。更多细节请参考 ./mmdet/core/anchor/anchor_generator.py#L10。
            scales=[8],  # 锚点的基本比例,特征图某一位置的锚点面积为 scale * base_sizes
            ratios=[0.5, 1.0, 2.0],  # 高度和宽度之间的比率。
            strides=[4, 8, 16, 32, 64]),  # 锚生成器的步幅。这与 FPN 特征步幅一致。 如果未设置 base_sizes,则当前步幅值将被视为 base_sizes。
        # 在训练和测试期间对框进行编码和解码。    
        bbox_coder=dict(  
            type='DeltaXYWHBBoxCoder',  # 框编码器的类别,'DeltaXYWHBBoxCoder' 是最常用的,更多细节请参考 ./mmdet/core/bbox/coder/delta_xywh_bbox_coder.py#L9。
            target_means=[0.0, 0.0, 0.0, 0.0],  # 用于编码和解码框的目标均值
            target_stds=[1.0, 1.0, 1.0, 1.0]),  # 用于编码和解码框的标准差
        # 分类分支的损失函数配置
        loss_cls=dict(  
            type='CrossEntropyLoss',  # 分类分支的损失类型,我们也支持 FocalLoss 等。
            use_sigmoid=True,  # RPN通常进行二分类,所以通常使用sigmoid函数。
            los_weight=1.0),  # 分类分支的损失权重。
        # 回归分支的损失函数配置。
        loss_bbox=dict(  
            type='L1Loss',  # 损失类型,我们还支持许多 IoU Losses 和 Smooth L1-loss 等,更多细节请参考 ./mmdet/models/losses/smooth_l1_loss.py#L56。
            loss_weight=1.0)),  # 回归分支的损失权重。
    # RoIHead 封装了两步(two-stage)/级联(cascade)检测器的第二步。
    roi_head=dict(  
        type='StandardRoIHead',  # RoI head 的类型,更多细节请参考 ./mmdet/models/roi_heads/standard_roi_head.py#L10。
         # 用于 bbox 回归的 RoI 特征提取器。
        bbox_roi_extractor=dict( 
            type='SingleRoIExtractor',  # RoI 特征提取器的类型,大多数方法使用  SingleRoIExtractor,更多细节请参考 ./mmdet/models/roi_heads/roi_extractors/single_level.py#L10。
            # RoI 层的配置
            roi_layer=dict(  
                type='RoIAlign',  # RoI 层的类别, 也支持 DeformRoIPoolingPack 和 ModulatedDeformRoIPoolingPack,更多细节请参考 ./mmdet/ops/roi_align/roi_align.py#L79。
                output_size=7,  # 特征图的输出大小。
                sampling_ratio=0),  # 提取 RoI 特征时的采样率。0 表示自适应比率。
            out_channels=256,  # 提取特征的输出通道。
            featmap_strides=[4, 8, 16, 32]),  # 多尺度特征图的步幅,应该与主干的架构保持一致。
        # RoI 层的配置
        bbox_head=dict(  # RoIHead 中 box head 的配置.
            type='Shared2FCBBoxHead',  # bbox head 的类别,更多细节请参考 ./mmdet/models/roi_heads/bbox_heads/convfc_bbox_head.py#L177。
            in_channels=256,  # bbox head 的输入通道。 这与 roi_extractor 中的 out_channels 一致。
            fc_out_channels=1024,  # FC 层的输出特征通道。
            roi_feat_size=7,  # 候选区域(Region of Interest)特征的大小。
            num_classes=80,  # 分类的类别数量。
            # 第二阶段使用的框编码器。
            bbox_coder=dict(  
                type='DeltaXYWHBBoxCoder',  # 框编码器的类别,大多数情况使用 'DeltaXYWHBBoxCoder'。
                target_means=[0.0, 0.0, 0.0, 0.0],  # 用于编码和解码框的均值
                target_stds=[0.1, 0.1, 0.2, 0.2]),  # 编码和解码的标准差。因为框更准确,所以值更小,常规设置时 [0.1, 0.1, 0.2, 0.2]。
            reg_class_agnostic=False,  # 回归是否与类别无关。
            # 分类分支的损失函数配置
            loss_cls=dict(  
                type='CrossEntropyLoss',  # 分类分支的损失类型,我们也支持 FocalLoss 等。
                use_sigmoid=False,  # 是否使用 sigmoid。
                loss_weight=1.0),  # 分类分支的损失权重。
            # 回归分支的损失函数配置。
            loss_bbox=dict(  
                type='L1Loss',  # 损失类型,我们还支持许多 IoU Losses 和 Smooth L1-loss 等。
                loss_weight=1.0)),  # 回归分支的损失权重。
        mask_roi_extractor=dict(  # 用于 mask 生成的 RoI 特征提取器。
            type='SingleRoIExtractor',  # RoI 特征提取器的类型,大多数方法使用 SingleRoIExtractor。
            roi_layer=dict(  # 提取实例分割特征的 RoI 层配置
                type='RoIAlign',  # RoI 层的类型,也支持 DeformRoIPoolingPack 和 ModulatedDeformRoIPoolingPack。
                output_size=14,  # 特征图的输出大小。
                sampling_ratio=0),  # 提取 RoI 特征时的采样率。
            out_channels=256,  # 提取特征的输出通道。
            featmap_strides=[4, 8, 16, 32]),  # 多尺度特征图的步幅。
        # mask 预测 head 模型
        mask_head=dict(  
            type='FCNMaskHead',  # mask head 的类型,更多细节请参考 ./mmdet/models/roi_heads/mask_heads/fcn_mask_head.py#L21。
            num_convs=4,  # mask head 中的卷积层数
            in_channels=256,  # 输入通道,应与 mask roi extractor 的输出通道一致。
            conv_out_channels=256,  # 卷积层的输出通道。
            num_classes=80,  # 要分割的类别数。
            # mask 分支的损失函数配置。
            loss_mask=dict(  
                type='CrossEntropyLoss',  # 用于分割的损失类型。
                use_mask=True,  # 是否只在正确的类中训练 mask。
                loss_weight=1.0))))  # mask 分支的损失权重.

1.4# rpn 和 rcnn 训练超参数的配置
    train_cfg = dict(  
        rpn=dict(  # rpn 的训练配置
            assigner=dict(  # 分配器(assigner)的配置
                type='MaxIoUAssigner',  # 分配器的类型,MaxIoUAssigner 用于许多常见的检测器,更多细节请参考 ./mmdet/core/bbox/assigners/max_iou_assigner.py#L10。
                pos_iou_thr=0.7,  # IoU >= 0.7(阈值) 被视为正样本。
                neg_iou_thr=0.3,  # IoU < 0.3(阈值) 被视为负样本。
                min_pos_iou=0.3,  # 将框作为正样本的最小 IoU 阈值。
                match_low_quality=True,  # 是否匹配低质量的框(更多细节见 API 文档).
                ignore_iof_thr=-1),  # 忽略 bbox 的 IoF 阈值。
            sampler=dict(  # 正/负采样器(sampler)的配置
                type='RandomSampler',  # 采样器类型,还支持 PseudoSampler 和其他采样器,更多细节请参考 ./mmdet/core/bbox/samplers/random_sampler.py#L8。
                num=256,  # 样本数量。
                pos_fraction=0.5,  # 正样本占总样本的比例。
                neg_pos_ub=-1,  # 基于正样本数量的负样本上限。
                add_gt_as_proposals=False),  # 采样后是否添加 GT 作为 proposal。
            allowed_border=-1,  # 填充有效锚点后允许的边框。
            pos_weight=-1,  # 训练期间正样本的权重。
            debug=False),  # 是否设置调试(debug)模式
         # 在训练期间生成 proposals 的配置
        rpn_proposal=dict( 
            nms_across_levels=False,  # 是否对跨层的 box 做 NMS。仅适用于 `GARPNHead` ,naive rpn 不支持 nms cross levels。
            nms_pre=2000,  # NMS 前的 box 数
            nms_post=1000,  # NMS 要保留的 box 的数量,只在 GARPNHHead 中起作用。
            max_per_img=1000,  # NMS 后要保留的 box 数量。
            nms=dict( # NMS 的配置
                type='nms',  # NMS 的类别
                iou_threshold=0.7 # NMS 的阈值
                ),
            min_bbox_size=0),  # 允许的最小 box 尺寸
         # roi head 的配置。
        rcnn=dict( 
            assigner=dict(  # 第二阶段分配器的配置,这与 rpn 中的不同
                type='MaxIoUAssigner',  # 分配器的类型,MaxIoUAssigner 目前用于所有 roi_heads。更多细节请参考 https://github.com/open-mmlab/mmdetection/blob/master/mmdet/core/bbox/assigners/max_iou_assigner.py#L10。
                pos_iou_thr=0.5,  # IoU >= 0.5(阈值)被认为是正样本。
                neg_iou_thr=0.5,  # IoU < 0.5(阈值)被认为是负样本。
                min_pos_iou=0.5,  # 将 box 作为正样本的最小 IoU 阈值
                match_low_quality=False,  # 是否匹配低质量下的 box(有关更多详细信息,请参阅 API 文档)。
                ignore_iof_thr=-1),  # 忽略 bbox 的 IoF 阈值
            sampler=dict(
                type='RandomSampler',  #采样器的类型,还支持 PseudoSampler 和其他采样器,更多细节请参考 ./mmdet/core/bbox/samplers/random_sampler.py#L8。
                num=512,  # 样本数量
                pos_fraction=0.25,  # 正样本占总样本的比例。.
                neg_pos_ub=-1,  # 基于正样本数量的负样本上限。.
                add_gt_as_proposals=True
            ),  # 采样后是否添加 GT 作为 proposal。
            mask_size=28,  # mask 的大小
            pos_weight=-1,  # 训练期间正样本的权重。
            debug=False))  # 是否设置调试模式。

1.5 # 用于测试 rpn 和 rcnn 超参数的配置
    test_cfg = dict(  
        rpn=dict(  # 测试阶段生成 proposals 的配置
            nms_across_levels=False,  # 是否对跨层的 box 做 NMS。仅适用于`GARPNHead`,naive rpn 不支持做 NMS cross levels。
            nms_pre=1000,  # NMS 前的 box 数
            nms_post=1000,  # NMS 要保留的 box 的数量,只在`GARPNHHead`中起作用。
            max_per_img=1000,  # NMS 后要保留的 box 数量
            nms=dict( # NMS 的配置
                type='nms',  # NMS 的类型
                iou_threshold=0.7 # NMS 阈值
                ),
            min_bbox_size=0),  # box 允许的最小尺寸
        rcnn=dict(  # roi heads 的配置
            score_thr=0.05,  # bbox 的分数阈值
            nms=dict(  # 第二步的 NMS 配置
                type='nms',  # NMS 的类型
                iou_thr=0.5),  # NMS 的阈值
            max_per_img=100,  # 每张图像的最大检测次数
            mask_thr_binary=0.5))  # mask 预处的阈值
dataset_type = 'CocoDataset'  # 数据集类型,这将被用来定义数据集。
data_root = 'data/coco/'  # 数据的根路径。
img_norm_cfg = dict(  # 图像归一化配置,用来归一化输入的图像。
    mean=[123.675, 116.28, 103.53],  # 预训练里用于预训练主干网络模型的平均值。
    std=[58.395, 57.12, 57.375],  # 预训练里用于预训练主干网络模型的标准差。
    to_rgb=True
)  #  预训练里用于预训练主干网络的图像的通道顺序。
train_pipeline = [  # 训练流程
    dict(type='LoadImageFromFile'),  # 第 1 个流程,从文件路径里加载图像。
    dict(
        type='LoadAnnotations',  # 第 2 个流程,对于当前图像,加载它的注释信息。
        with_bbox=True,  # 是否使用标注框(bounding box), 目标检测需要设置为 True。
        with_mask=True,  # 是否使用 instance mask,实例分割需要设置为 True。
        poly2mask=False),  # 是否将 polygon mask 转化为 instance mask, 设置为 False 以加速和节省内存。
    dict(
        type='Resize',  # 变化图像和其注释大小的数据增广的流程。
        img_scale=(1333, 800),  # 图像的最大规模。
        keep_ratio=True
    ),  # 是否保持图像的长宽比。
    dict(
        type='RandomFlip',  #  翻转图像和其注释大小的数据增广的流程。
        flip_ratio=0.5),  # 翻转图像的概率。
    dict(
        type='Normalize',  # 归一化当前图像的数据增广的流程。
        mean=[123.675, 116.28, 103.53],  # 这些键与 img_norm_cfg 一致,因为 img_norm_cfg 被
        std=[58.395, 57.12, 57.375],     # 用作参数。
        to_rgb=True),
    dict(
        type='Pad',  # 填充当前图像到指定大小的数据增广的流程。
        size_divisor=32),  # 填充图像可以被当前值整除。
    dict(type='DefaultFormatBundle'),  # 流程里收集数据的默认格式捆。
    dict(
        type='Collect',  # 决定数据中哪些键应该传递给检测器的流程
        keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),  # 第 1 个流程,从文件路径里加载图像。
    dict(
        type='MultiScaleFlipAug',  # 封装测试时数据增广(test time augmentations)。
        img_scale=(1333, 800),  # 决定测试时可改变图像的最大规模。用于改变图像大小的流程。
        flip=False,  # 测试时是否翻转图像。
        transforms=[
            dict(type='Resize',  # 使用改变图像大小的数据增广。
                 keep_ratio=True),  # 是否保持宽和高的比例,这里的图像比例设置将覆盖上面的图像规模大小的设置。
            dict(type='RandomFlip'),  # 考虑到 RandomFlip 已经被添加到流程里,当 flip=False 时它将不被使用。
            dict(
                type='Normalize',  #  归一化配置项,值来自 img_norm_cfg。
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(
                type='Pad',  # 将配置传递给可被 32 整除的图像。
                size_divisor=32),
            dict(
                type='ImageToTensor',  # 将图像转为张量
                keys=['img']),
            dict(
                type='Collect',  # 收集测试时必须的键的收集流程。
                keys=['img'])
        ])
]

2. 数据集配置(datasets) =========================================
data = dict(
    samples_per_gpu=2,  # 单个 GPU 的 Batch size
    workers_per_gpu=2,  # 单个 GPU 分配的数据加载线程数
    train=dict(  # 训练数据集配置
        type='CocoDataset',  # 数据集的类别, 更多细节请参考 ./mmdet/datasets/coco.py#L19。
        ann_file='data/coco/annotations/instances_train2017.json',  # 注释文件路径
        img_prefix='data/coco/train2017/',  # 图片路径前缀
        pipeline=[  # 流程, 这是由之前创建的 train_pipeline 传递的。
            dict(type='LoadImageFromFile'),
            dict(
                type='LoadAnnotations',
                with_bbox=True,
                with_mask=True,
                poly2mask=False),
            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(
                type='Collect',
                keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks'])
        ]),
    val=dict(  # 验证数据集的配置
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # 由之前创建的 test_pipeline 传递的流程。
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ]),
    test=dict(  # 测试数据集配置,修改测试开发/测试(test-dev/test)提交的 ann_file
        type='CocoDataset',
        ann_file='data/coco/annotations/instances_val2017.json',
        img_prefix='data/coco/val2017/',
        pipeline=[  # 由之前创建的 test_pipeline 传递的流程。
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        samples_per_gpu=2  # 单个 GPU 测试时的 Batch size

3. 训练策略配置(schedules) =========================================
evaluation = dict(  # evaluation hook 的配置,更多细节请参考 ./mmdet/core/evaluation/eval_hooks.py#L7。
    interval=1,  # 验证的间隔。
    metric=['bbox', 'segm'])  # 验证期间使用的指标。
optimizer = dict(  # 用于构建优化器的配置文件。支持 PyTorch 中的所有优化器,同时它们的参数与 PyTorch 里的优化器参数一致。
    type='SGD',  # 优化器种类,更多细节可参考 ./mmdet/core/optimizer/default_constructor.py#L13。
    lr=0.02,  # 优化器的学习率,参数的使用细节请参照对应的 PyTorch 文档。
    momentum=0.9,  # 动量(Momentum)
    weight_decay=0.0001)  # SGD 的衰减权重(weight decay)。
optimizer_config = dict(  # optimizer hook 的配置文件,执行细节请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8。
    grad_clip=None)  # 大多数方法不使用梯度限制(grad_clip)。
lr_config = dict(  # 学习率调整配置,用于注册 LrUpdater hook。
    policy='step',  # 调度流程(scheduler)的策略,也支持 CosineAnnealing, Cyclic, 等。请从 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9 参考LrUpdater 的细节。
    warmup='linear',  # 预热(warmup)策略,也支持 `exp` 和 `constant`。
    warmup_iters=500,  # 预热的迭代次数
    warmup_ratio=0.001,  # 用于热身的起始学习率的比率
    step=[8, 11])  # 衰减学习率的起止回合数
runner = dict(
    type='EpochBasedRunner',  # 将使用的 runner 的类别 (例如 IterBasedRunner 或 EpochBasedRunner)。
    max_epochs=12) # runner 总回合数, 对于 IterBasedRunner 使用 `max_iters`

4. 运行配置(runtime) =========================================
checkpoint_config = dict(  # Checkpoint hook 的配置文件。执行时请参考 https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/checkpoint.py。
    interval=1)  # 保存的间隔是 1。
log_config = dict(  # register logger hook 的配置文件。
    interval=50,  # 打印日志的间隔
    hooks=[
        # dict(type='TensorboardLoggerHook')  # 同样支持 Tensorboard 日志
        dict(type='TextLoggerHook')
    ])  # 用于记录训练过程的记录器(logger)。
dist_params = dict(backend='nccl')  # 用于设置分布式训练的参数,端口也同样可被设置。
log_level = 'INFO'  # 日志的级别。
load_from = None  # 从一个给定路径里加载模型作为预训练模型,它并不会消耗训练时间。
resume_from = None  # 从给定路径里恢复检查点(checkpoints),训练模式将从检查点保存的轮次开始恢复训练。
workflow = [('train', 1)]  # runner 的工作流程,[('train', 1)] 表示只有一个工作流且工作流仅执行一次。根据 total_epochs 工作流训练 12个回合。
work_dir = 'work_dir'  # 用于保存当前实验的模型检查点和日志的目录。

        配置文件包含四个基本组件:datasets、models、schedules以及runtime。model除了模型本身网络结构以外,还包含bbox assigner、bbox sampler、nms等配置参数;data主要包含batch_size、训练集、验证集、测试集的相关参数 ;schedules包含优化器、学习率、迭代次数等训练过程相关参数的配置信息;runtime则是一些日志打印、参数保存、分布式训练相关的配置。

3.config 类

        MMDetection使用MMCV库中Config类完成对配置文件的解析。Config 类用于操作配置文件,它支持从多种文件格式中加载配置,包括python, json和yaml。 它提供了类似字典对象的接口来获取和设置值。

3.1 读取配置文件

        一般使用Config.fromfile(filename)来读取配置文件(也可以直接传入一个dict),返回一个Config类:        

from mmcv import Config
cfg = Config.fromfile('../configs/test_config.py')

        fromfile()函数源码如下,其核心函数是_file2dict()。_file2dict()会根据文本顺序,按照key = value的格式解析配置文件,得到一个名为cfg_dict的字典,如果存在_base_字段,还会对_base_包含的每个文件路径再调用一次_file2dict()函数,将文件中包含的配置参数加入到cfg_dict中,实现配置文件的继承功能。需要注意的是,_file2dict()内部会对_base_中不同文件包含的键值进行校验,不同base文件中不允许出现重复的键值,否则MMCV不知道以哪个base文件为准。

def fromfile(filename,
             use_predefined_variables=True,
             import_custom_modules=True):
    cfg_dict, cfg_text = Config._file2dict(filename,
                                           use_predefined_variables)
    # import_modules_from_strings()是根据字符串列表对应的模块
    if import_custom_modules and cfg_dict.get('custom_imports', None):
        import_modules_from_strings(**cfg_dict['custom_imports'])
    return Config(cfg_dict, cfg_text=cfg_text, filename=filename)

        构造Config对象的时候,会将python的dict数据类型转换为ConfigDict类型进行处理。ConfigDict第三方库addict中Dict的子类,因为python原生的dict类型不支持.属性的访问方式,特别是dict内部嵌套了多层dict的时候,如果按照key的访问方式,代码写起来非常低效,而Dict类通过重写__getattr__()的方式实现了.属性的访问方式。所以继承了DictConfigDict也支持使用.属性的方式访问字典中的各个成员值。

3.2 修改配置参数

        MMCV解析配置文件的内部逻辑后,如何修改配置参数的值自然也清楚了。因为_file2dict()是根据文本顺序构建字典,所以后写的键值可以覆盖原来的值 (如果变量类型是list,会将list进行全部替换,无法实现某一个item的修改)。以修改优化器为例,原来的继承的优化器是SGD,学习率为0.02:现在想要将由_base_继承的学习率调整为0.001,可以直接在当前配置文件中增加一行:

#原始的优化器
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

#修改学习率
optimizer = dict(lr=0.001)

#修改后的优化器
ptimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)

        如果想要换一个新的优化器,但两个优化器的参数不兼容,需要删掉原来的键值,用一组全新的键值代替,这时可以通过配置_delete_=True来实现:然后就完成了优化器的替换。

# 将原来的SGD替换成AdamW
optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)

         修改mask_rcnn的主干网络为例,基础配置的 Mask R-CNN 使用 ResNet-50,在需要将主干网络改成 HRNet 的时候,因为 HRNet 和 ResNet 中有不同的字段,需要使用 _delete_=True 将新的键去替换 backbone 域内所有老的键。

#原始的model
model = dict(
    type='MaskRCNN',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(...),
    rpn_head=dict(...),
    roi_head=dict(...))


#修改为HRNet的model
_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model = dict(
    pretrained='open-mmlab://msra/hrnetv2_w32',
    backbone=dict(
        _delete_=True,
        type='HRNet',
        extra=dict(
            stage1=dict(
                num_modules=1,
                num_branches=1,
                block='BOTTLENECK',
                num_blocks=(4, ),
                num_channels=(64, )),
            stage2=dict(
                num_modules=1,
                num_branches=2,
                block='BASIC',
                num_blocks=(4, 4),
                num_channels=(32, 64)),
            stage3=dict(
                num_modules=4,
                num_branches=3,
                block='BASIC',
                num_blocks=(4, 4, 4),
                num_channels=(32, 64, 128)),
            stage4=dict(
                num_modules=3,
                num_branches=4,
                block='BASIC',
                num_blocks=(4, 4, 4, 4),
                num_channels=(32, 64, 128, 256)))),
    neck=dict(...))

3.3使用中间变量

        配置文件里会使用一些中间变量,例如数据集里的 train_pipeline/test_pipeline。我们在定义新的 train_pipeline/test_pipeline 之后,需要将它们传递到 data 里。例如,我们想在训练或测试时,改变 Mask R-CNN 的多尺度策略 (multi scale strategy),train_pipeline/test_pipeline 是我们想要修改的中间变量。

_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='Resize',
        img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
                   (1333, 768), (1333, 800)],
        multiscale_mode="value",
        keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))

         如果我们想从 SyncBN 切换到 BN 或者 MMSyncBN,我们需要修改配置文件里的每一个 norm_cfg

_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
    backbone=dict(norm_cfg=norm_cfg),
    neck=dict(norm_cfg=norm_cfg),
    ...)

3.4 打印配置文件

        如果想要查看完整的配置文件信息,不需要依据_base_一级一级往上查找,可以通过官方给定的工具./tools/misc/print_config.py来打印配置文件:

        我们可以在根目录下通过print config把相关的参数打印出来进行研究。如下我们要打印mask_rcnn的配置文件进行研究:

python tools/misc/print_config.py configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py 

configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py 是你要执行的基本model路径

         然后就可以看到mask_rcnn_r101_fpn_2x_coco.py对应的完整的配置文件内容。

         在此处看配置文件不太方便,所以可以采用将配置文件保存到txt文件,用如下命令

 python tools/misc/print_config.py configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py > config.txt

        在根目录下可以查看生成的tet文件:

        


        

  • 11
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
mmdetectionconfig文件用于定义模型的结构和超参数。根据引用,mmdetectionconfig文件位于mmdetection/configs目录下,每个模型都有一个对应的config文件。配置文件使用Python语法编写,并包含了各种参数和模块的定义。 引用提到了mmdetection/mmdet/apis目录,其中的inference.py文件中包含了init_detector和inference_detector两个函数。init_detector函数用于从配置文件和模型权重文件中初始化模型,inference_detector函数用于进行推理。这些API函数可以帮助用户快速加载和使用模型。 根据引用,mmdetection的官方GitHub地址是https://github.com/open-mmlab/mmdetection。用户可以在该地址找到模型的权重文件mmdetection官方提供了model_zoo.md文件,其中列出了各个模型的权重下载链接。 为了使用mmdetection进行测试,用户需要导入mmcv和相应的API函数,并进行初始化和推理操作。引用中给出了一个测试代码的示例,其中使用了faster_rcnn_r50_fpn_1x_coco模型进行推理。 综上所述,mmdetectionconfig文件用于定义模型结构和超参数,API函数可以帮助用户加载和使用模型,官方GitHub地址提供了模型权重下载链接。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [mmdetection源码详细解读](https://blog.csdn.net/weixin_41560402/article/details/108169935)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值