矩阵分析与应用

协方差矩阵

随机向量x(\xi)的自协方差矩阵定义为:
C_{x}=E\left \{ [x(\xi)-\mu _{x}][x(\xi)-\mu _{x}]^{H} \right \} \\ \\=\begin{bmatrix} c_{11} & c_{12}&.. . &c_{1m} \\ c_{21}& c_{22} &.. . &c_{2m} \\ .. .& .. . & .. .& .. .\\ c_{m1}&c_{m2} & .. . & c_{mm} \end{bmatrix}

式中,主对角线的元素:
c_{ii}=E\left \{ |x_{i}(\xi)-\mu _{i}|^{2} \right \}, i=1,2,.. .,m

这表示随机变量x_{i}(\xi)的方差\sigma _{i}^{2},即c_{ii}=\sigma _{i}^{2}

而非主对角线元素表示如下:
c_{ij}=E\left \{[x_{i}(\xi)-\mu _{i}][x_{j}(\xi)-\mu _{j}]^{*} \right \}=E\left \{ x_{i}(\xi) x_{j}^{*}(\xi) \right \}-\mu_{i}u_{j}^{*}=c_{ji}^{*}

这表示随机变量x_{i}(\xi)x_{j}(\xi)之间的协方差。

自协方差矩阵也是Hermitian矩阵。

自相关矩阵和自协方差矩阵之间存在以下关系:
C_{x}=R_{x}-\mu_{x}\mu_{x}^{H}

互相关矩阵和互协方差矩阵

推广自相关矩阵和自协方差矩阵的概念,则有随机向量x(\xi)y(\xi)的互相关矩阵如下:
R_{xy}=E\left \{ x(\xi) y^{H}(\xi)\right \}=\begin{bmatrix} r_{x_{1}y_{1}} & r_{x_{1}y_{2}} & .. . &r_{x_{1}y_{m}} \\ r_{x_{2}y_{1}} & r_{x_{2}y_{2}}& .. . &r_{x_{2}y_{m}} \\ .. .& .. . & .. . &.. . \\ r_{x_{m}y_{1}}& r_{x_{m}y_{2}}& .. .& r_{x_{m}y_{m}} \end{bmatrix}

互协方差矩阵:
C_{xy}=E\left \{ [x(\xi)-\mu _{x}][y(\xi)-\mu _{y}]^{H} \right \}\\ \\=R_{xy}-\mu_{x}\mu_{y}^{H}\\ \\=\begin{bmatrix} c_{x_{1}y_{1}} & c_{x_{1}y_{2}} & .. . &c_{x_{1}y_{m}} \\ c_{x_{2}y_{1}} & c_{x_{2}y_{2}}& .. . &c_{x_{2}y_{m}} \\ .. .& .. . & .. . &.. . \\ c_{x_{m}y_{1}}&c_{x_{m}y_{2}}& .. .& c_{x_{m}y_{m}} \end{bmatrix}

式中,r_{x_{i},y_{i}}=E\left \{ x_{i}(\xi)y_{j}^{*}(\xi) \right \}是随机变量x_{i}(\xi)y_{j}(\xi)之间的互相关。

c_{x_{i},y_{j}}=E\left \{ [x_{i}(\xi)-\mu_{x_{i}}] [y_{j}(\xi)-\mu_{y_{j}}]^{*} \right \}是随机变量x_{i}(\xi)y_{j}(\xi)之间的互协方差。

一个随机向量的自相关矩阵和自协方差矩阵均为正方的共轭对称矩阵,而两个维数不同的随机向量之间的互相关矩阵和互协方差矩阵是非正方的矩阵。即使这两个随机向量的维数相同,互相关矩阵和互协方差矩阵为正方矩阵,但它们也不是共轭对称的。

当采样点\xi取一系列值时,随机变量序列\left \{ x_{i}(\xi) \right \}构成一随机过程或信号。由于随机信号减去自己的均值后,只剩下随机变化部分,所以协方差函数给出的是两个随机信号之间随机变化部分的相乘。一般来说,两个随机信号的随机变化部分中的共性部分的相乘总是取相同的符号,使得共性部分得到加强而保留下来。而两个信号的非共性部分则是随机的,它们的乘积有时取正有时取负,通过数学期望的平均运算后,趋于相互抵消。

这也意味着,互协方差函数能把两个信号之间随机变化的共性部分提取出来,并抑制掉非共性部分。因此,互协方差函数描述了两个信号之间的相关程度。也就是说,互协方差函数越大,则这两个随机信号的相关程度越强,反之,相关程度越弱。

但是使用互协方差的绝对大小度量两个随机向量的相关程度并不方便。

两个随机变量x(\xi)y(\xi)之间的相关系数定义为:
\rho _{xy}=\frac{c_{xy}}{\sqrt{E\left \{ |x(\xi)|^{2} E\left \{ |y(\xi)|^{2} \right \}\right \}}}=\frac{c_{xy}}{ \sigma _{x} \sigma _{y}}

其中,c_{xy}是随机变量x(\xi)y(\xi)之间的互协方差,而\sigma _{x}^{2}\sigma _{y}^{2}分别是两个随机变量的方差。

### 回答1: 《矩阵分析应用》是由张贤达编著的一本关于矩阵分析及其在应用中的使用的教材。本书主要介绍了矩阵的基本概念、性质和运算,并探讨了矩阵线性代数、微积分、概率统计、信号处理等学科中的应用。 在矩阵分析的基础部分,本书详细阐述了矩阵的定义、矩阵的运算法则,以及线性方程组和特征值问题等。这些基础知识对于进一步学习矩阵应用具有重要的指导作用。 在矩阵应用部分,本书首先介绍了矩阵在线性方程组求解、线性变换、向量空间等方面的应用。其次,本书还讨论了矩阵在微积分中的应用,如矩阵微积分和矩阵微分方程等。此外,本书还深入介绍了矩阵在概率统计、信号处理、图论及最优化等领域中的重要应用,如随机矩阵、协方差矩阵、图的邻接矩阵和最小二乘法等。 总的来说,张贤达的《矩阵分析应用》是一本内容丰富、系统全面的矩阵分析教材。通过阅读本书,读者可以逐步掌握矩阵的基本理论和运算,并了解其在不同学科中的应用。无论是对于即将学习矩阵分析的学生,还是对于已经有一定矩阵基础的科研人员和工程师,本书都是一本实用的参考书,可以提供帮助和指导。 ### 回答2: 《矩阵分析应用》是由张贤达编写的一本专门介绍矩阵分析应用的教材。该书以系统的方式介绍了矩阵的理论、性质和基本运算,同时也涵盖了矩阵在各种应用领域中的具体应用。这本教材适用于数学、物理、工程、计算机科学等各个领域的学习者。 在矩阵分析的理论方面,书中首先介绍了矩阵的基本概念和运算法则,包括行、列、元素、转置、加减乘除等,同时也解释了矩阵的相等和乘积等性质。然后,书中详细讲解了特殊类型的矩阵,如对称矩阵、三角矩阵、奇异矩阵等,并介绍了它们的特征和性质。此外,书中还涉及到矩阵的线性组合、秩、行列式、逆矩阵和特征值等重要概念和定理。 在应用方面,该书展示了矩阵在各个领域中的广泛应用。首先,矩阵线性代数中的应用包括解线性方程组、线性变换、特征值问题等。其次,矩阵在工程中的应用包括电路分析、力学分析、信号处理等。最后,矩阵在计算机科学中的应用包括图像处理、机器学习、数据挖掘等。 总之,《矩阵分析应用》是一本全面介绍矩阵分析应用的教材,在理论和应用方面都给予了读者充分的讲解和示例。无论是对于学术研究者还是专业技术人员,该书都是一本很好的参考书籍。它帮助读者建立了对矩阵的全面认识,为进一步的学习和应用提供了坚实的基础。 ### 回答3: 《张贤达矩阵分析应用pdf》是张贤达教授撰写的一本关于矩阵分析应用的教材。矩阵分析是数学中的分支之一,它研究矩阵的性质和运算规律,并将其应用于各种领域。 这本教材以系统介绍矩阵分析为主线,内容包括线性空间、线性变换、矩阵的运算与性质、特征值与特征向量等基础内容。此外,它还涵盖了矩阵的迹、行列式、正交变换、对称矩阵等高级内容,以及广义逆矩阵、半正定矩阵等一些应用领域。 这本教材的优点是内容全面,理论与实践相结合。作者以通俗易懂的语言解释了复杂的数学概念,并且通过大量的例题和习题帮助读者巩固所学知识。此外,教材还提供了一些实际应用案例,如图像处理、信号处理等领域,使读者能够将所学知识应用于实际问题中。 针对该教材的读者群体主要包括数学、工程、物理等相关专业的本科生和研究生。对于想要深入学习矩阵分析应用于实际问题的读者来说,这本教材是一本很好的参考书。 总体来说,《张贤达矩阵分析应用pdf》是一本内容丰富、易于理解且具有实际应用价值的教材。无论是作为教学辅助资料还是自学工具,它都能帮助读者掌握矩阵分析的核心概念和方法,并将其应用于实际问题中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值