目录 0 概述 1 引论 1.1 误差的来源与基本概念 2 线性方程组的数值解法 2.1 迭代法 2.2 直接法 3 非线性方程组求根 3.1 迭代法 3.2 Newton迭代法 4 插值与拟合 4.1 插值 4.2 拟合 5 数值积分与数值微分 5.1 数值积分的概念 5.2 Newton-Cotes求积公式 5.3 复化求积公式 6 常微分方程初值问题 6.1 数值微分 6.2 方法 6.2.1 数值微分方法 6.2.2 数值积分方法 6.2.3 Taylor公式 6.3 截断误差和方法的阶 6.4 收敛性与稳定性 7 矩阵特征值与特征向量的计算 0 概述 1 引论 1.1 误差的来源与基本概念 2 线性方程组的数值解法 2.1 迭代法 2.2 直接法 3 非线性方程组求根 3.1 迭代法 3.2 Newton迭代法 4 插值与拟合 4.1 插值 4.2 拟合 5 数值积分与数值微分 5.1 数值积分的概念 5.2 Newton-Cotes求积公式 5.3 复化求积公式 6 常微分方程初值问题 6.1 数值微分 6.2 方法 6.2.1 数值微分方法 6.2.2 数值积分方法 6.2.3 Taylor公式 6.3 截断误差和方法的阶 6.4 收敛性与稳定性 7 矩阵特征值与特征向量的计算