基于粒子群优化神经网络(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现

💥1 概述

本文使用 PSO 算法更新隐藏层和输出层的权重和偏差。

📚2 运行结果

部分代码:

function NMSE_calc = NMSE( wb, net, input, target)

% wb is the weights and biases row vector obtained from the genetic algorithm.

% It must be transposed when transferring the weights and biases to the network net.

 net = setwb(net, wb');

% The net output matrix is given by net(input). The corresponding error matrix is given by

 error = target - net(input);

% The mean squared error normalized by the mean target variance is

 NMSE_calc = mean(error.^2)/mean(var(target',1));

% It is independent of the scale of the target components and related to the Rsquare statistic via

% Rsquare = 1 - NMSEcalc ( see Wikipedia)
 

🎉3 参考文献

[1]Selva (2022). particle swarm optimized Neural Network. 

🌈4 Matlab代码实现

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是基于粒子群算法优化BP神经网络Matlab 代码: ``` % 首先,我们需要准备一些数据用于训练和测试模型。这里以鸢尾花数据集为例。 % 加载数据 load fisheriris % 将数据划分为训练集和测试集 train_data = [meas(1:40,:); meas(51:90,:); meas(101:140,:)]; test_data = [meas(41:50,:); meas(91:100,:); meas(141:150,:)]; % 将类别标签转换为独热编码 train_label = zeros(size(train_data,1),3); test_label = zeros(size(test_data,1),3); for i = 1:size(train_data,1) if species(i) == 'setosa' train_label(i,:) = [1 0 0]; elseif species(i) == 'versicolor' train_label(i,:) = [0 1 0]; else train_label(i,:) = [0 0 1]; end end for i = 1:size(test_data,1) if species(i+40) == 'setosa' test_label(i,:) = [1 0 0]; elseif species(i+40) == 'versicolor' test_label(i,:) = [0 1 0]; else test_label(i,:) = [0 0 1]; end end % 接着,我们定义神经网络模型和粒子群算法的参数。 % 定义BP神经网络的结构和超参数 input_size = size(train_data,2); hidden_size = 10; output_size = size(train_label,2); learning_rate = 0.1; epoch_num = 1000; % 定义粒子群算法的参数 particle_num = 20; max_iter = 100; w = 0.8; c1 = 1.5; c2 = 1.5; % 然后,我们初始化粒子的位置和速度,并定义损失函数。 % 初始化粒子的位置和速度 particle_position = rand(hidden_size*(input_size+1)+output_size*(hidden_size+1), particle_num); particle_velocity = zeros(size(particle_position)); % 定义损失函数 loss_func = @(w) bpnn_lossfunction(w, train_data, train_label, input_size, hidden_size, output_size, learning_rate); % 接下来,我们开始迭代优化。 % 迭代优化 global_best_position = particle_position(:,1); global_best_loss = loss_func(global_best_position); for iter = 1:max_iter for i = 1:particle_num % 更新速度和位置 particle_velocity(:,i) = w*particle_velocity(:,i) + c1*rand(size(particle_position,1),1).*(particle_best_position(:,i)-particle_position(:,i)) + c2*rand(size(particle_position,1),1).*(global_best_position-particle_position(:,i)); particle_position(:,i) = particle_position(:,i) + particle_velocity(:,i); % 计算当前粒子的损失函数值,并更新其最优位置 current_loss = loss_func(particle_position(:,i)); if current_loss < particle_best_loss(i) particle_best_position(:,i) = particle_position(:,i); particle_best_loss(i) = current_loss; end % 更新全局最优位置 if current_loss < global_best_loss global_best_position = particle_position(:,i); global_best_loss = current_loss; end end end % 最后,我们用测试集评估模型的性能。 % 用测试集评估模型性能 test_pred = bpnn_predict(global_best_position, test_data, input_size, hidden_size, output_size); test_acc = sum(sum(test_pred == test_label))/numel(test_label); disp(['Test accuracy: ', num2str(test_acc)]); % 下面是损失函数、预测函数和反向传播函数的代码。 % 损失函数 function loss = bpnn_lossfunction(w, data, label, input_size, hidden_size, output_size, learning_rate) % 将权重矩阵解开为输入层到隐层和隐层到输出层两部分 w1 = reshape(w(1:hidden_size*(input_size+1)), hidden_size, input_size+1); w2 = reshape(w(hidden_size*(input_size+1)+1:end), output_size, hidden_size+1); % 前向传播,计算预测值和损失函数 input_data = [data, ones(size(data,1),1)]; hidden_output = sigmoid(input_data*w1'); hidden_output = [hidden_output, ones(size(hidden_output,1),1)]; output = sigmoid(hidden_output*w2'); loss = -sum(sum(label.*log(output) + (1-label).*log(1-output)))/size(data,1); % 反向传播,更新权重矩阵 output_delta = output - label; hidden_delta = (output_delta*w2(:,1:end-1)).*hidden_output(:,1:end-1).*(1-hidden_output(:,1:end-1)); w2_grad = output_delta'*hidden_output/size(data,1); w1_grad = hidden_delta'*input_data/size(data,1); w2 = w2 - learning_rate*w2_grad; w1 = w1 - learning_rate*w1_grad; % 将权重矩阵重新组合并展开 loss = loss + 0.5*learning_rate*(sum(sum(w1.^2)) + sum(sum(w2.^2))); w = [w1(:); w2(:)]; end % 预测函数 function pred = bpnn_predict(w, data, input_size, hidden_size, output_size) % 将权重矩阵解开为输入层到隐层和隐层到输出层两部分 w1 = reshape(w(1:hidden_size*(input_size+1)), hidden_size, input_size+1); w2 = reshape(w(hidden_size*(input_size+1)+1:end), output_size, hidden_size+1); % 前向传播,得到预测值 input_data = [data, ones(size(data,1),1)]; hidden_output = sigmoid(input_data*w1'); hidden_output = [hidden_output, ones(size(hidden_output,1),1)]; output = sigmoid(hidden_output*w2'); [~, pred] = max(output,[],2); end % 反向传播函数 function [w1_grad, w2_grad] = bpnn_backprop(w1, w2, data, label, learning_rate) % 前向传播,计算预测值和损失函数 input_data = [data, ones(size(data,1),1)]; hidden_output = sigmoid(input_data*w1'); hidden_output = [hidden_output, ones(size(hidden_output,1),1)]; output = sigmoid(hidden_output*w2'); loss = -sum(sum(label.*log(output) + (1-label).*log(1-output)))/size(data,1); % 反向传播,更新权重矩阵 output_delta = output - label; hidden_delta = (output_delta*w2(:,1:end-1)).*hidden_output(:,1:end-1).*(1-hidden_output(:,1:end-1)); w2_grad = output_delta'*hidden_output/size(data,1); w1_grad = hidden_delta'*input_data/size(data,1); w2_grad = w2_grad + learning_rate*w2; w1_grad = w1_grad + learning_rate*w1; end % sigmoid 函数 function y = sigmoid(x) y = 1./(1+exp(-x)); end ``` 注意,在上面的代码中,我们使用了独热编码和交叉熵损失函数来处理多分类问题。如果你要处理二分类问题或回归问题,可以相应地调整代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值