👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
利用图像结构信息是字典学习的难点,针对传统非参数贝叶斯算法对图像结构信息利用不充分,以及算法运行效率低下的问题,该文提出一种二进制数据的贝叶斯非参数聚类算法。
📚2 运行结果
部分代码:
clear all;
%% add paths to codes and data
addpath('Visualization/export_fig/');
addpath('Visualization/');
addpath('BNPBDCA/');
addpath('data/Chemotherapy/')
addpath('data/misc/');
outdir='results\Chemotherapy\'; % define output directory, change if necessary
if exist(outdir)~=7
mkdir(outdir);
end
% select chemotherapy drugs
interesting_drugs={'Doxorubicin', 'Etoposide', 'Gemcitabine', 'Cisplatin','Docetaxel', 'Methotrexate'}
%% Read data
data=dlmread('binary_data.txt');
cell_lines=textread('cell_lines.txt','%s');
headers=textread('headers.txt','%s');
data_mut=data(:,14:21);%mutation data
Id=sum(data_mut,2)~=0;%find cell lines that have no mutations
Im=ismember(headers,interesting_drugs);
Im(1:21)=true;
data=data(Id,Im);
cell_lines=cell_lines(Id);
headers=headers(Im);
size(data)
%% Initialize parameters and hyper parameters
fact=0.9; % cooling factor
NOIT=500; % no of iterations
alpha=1; % beta parameter
beta=betaparams(data); % beta parameter
gamma=1; % Dirichlet parameter
T=1; % initial temperature
labels=1:size(data,1); % initial labels
c=clust2(data(:,:),NOIT,[outdir 'outfile.txt'],labels,fact,alpha,beta,gamma,T);% cluster data
%% Visualization
map=flipud(brewermap([],'RdYlBu'));
figure;imagesc(data);colormap(map);
export_fig(gcf,[outdir 'data'],'-jpg','-q100','-r300','-transparent');
plot_clusters(c,data,[0 0 800 900]);colormap(map);set(gca,'YDir','normal','XTick',1:length(headers),'XTickLabel',headers,'FontSize',12);rotateXLabels(gca,-45);
export_fig(gcf,[outdir 'clustered_data'],'-jpg','-q100','-r300','-transparent');
plot_clusters1(c,data,headers,outdir,-1,[0 0 900 250]);
🌈3 Matlab代码实现
🎉4 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]董道广,芮国胜,田文飚,张洋,刘歌.具有聚类结构相似性的非参数贝叶斯字典学习算法[J].电子与信息学报,2020,42(11):2765-2772.