👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文提供了一个简单直观的资产回报和/或波动性相互依赖的度量。特别是制定并检查了回报溢出和波动溢出的精确和独立度量。本文的框架有助于研究非危机和危机事件,包括溢出趋势和爆发;事实证明,两者在经验上都很重要。特别是,在对20世纪90年代初至今的19个全球股票市场的分析中,研究发现了回报溢出与波动溢出动态中的差异行为的显著证据:回报溢出呈现出缓慢增长的趋势,但没有爆发,而波动溢出则没有趋势,但有明显的爆发。
📚2 运行结果
部分代码:
load 'DYdata.mat'
iso2 = dyorder(:,(end-1):end);
% remove missing data
[dy, idx] = removeMissing(dy);
date_dy = datestr(idx,:);
%% DY estimation
startyear = 1991;
endyear = 2019;
numobs = (endyear - startyear + 1) * 12;
nvars = size(dy,2);
nlags = 12;
nsteps= 12;
useGIRF = 1;
Mdl = varm(nvars, nlags);
Mdl.SeriesNames = string(iso2);
% estimate VAR model
dy_sub = dy((end-numobs+1):end,:);
dyMdl = estimate(Mdl, dy_sub);
% Compute DY Table
[DYtable, Spillover, From, To, Net] = computeDYtable(dyMdl, nsteps, useGIRF);
DYtable = array2table([DYtable; [Net;NaN]']);
varnames = [iso2 repmat(' ',size(iso2,1),1);'FROM OTHERS'];
rownames = [iso2 repmat(' ',size(iso2,1),1);'TO OTHERS ';'NET '];
DYtable.Properties.VariableNames = cellstr(varnames);
DYtable.Properties.RowNames = cellstr(rownames);
disp(DYtable);
%% Rolling DY
nlags = 3;
nsteps= 12;
window = 96;
[~,Spillroll_dy,~,~,~] = computeDYRolling(dy_sub,nlags,nsteps,window);
timeaxis = linspace(1991,2020,size(dy_sub,1));
figure;
plot(timeaxis,Spillroll_dy);
title('DY Rolling Index');
grid on
🎉3 参考文献
[1]刘金全,王国志.金融周期与经济周期关联机制研究——基于DY动态溢出指数和时变格兰杰因果关系双重检验[J].暨南学报(哲学社会科学版),2021,43(04):84-99.