👨🎓个人主页:研学社的博客
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
这本书的目的是提出一个新的一类混沌系统的调查,所谓的分数阶混沌系统。这本书也可以用作与非线性系统、分数阶系统等相关课程的教科书。这本书适合高级本科生和研究生。它是一种分数阶混沌系统的指南,以原始研究论文的材料为特色,包括作者自己的研究。本书组织如下:第一章是分数阶混沌系统的简要介绍。
第二章提供了分数阶微积分的基本知识,它的性质和积分传递方法。三个著名的定义的分数阶导数/积分和方法为他们的数值逼近提出。
第三章包括分数阶系统的介绍、描述和性质。研究了分数阶线性时不变(LTI)系统、非线性系统和分数阶控制器。
第四章讨论了分数阶(LTI和非线性)系统的稳定性。研究了区间分数阶系统的稳定性。
第五章概述了总阶数小于3的各种分数阶混沌系统。我们还分析了一些著名的系统,例如Chua的振荡器,Lorenz的系统,Rössler的系统,Duffing的系统,以及其他一些系统,例如Volta的系统。
第六章首先介绍了分数阶混沌系统的控制策略。介绍了三种常用的控制方法:反馈控制、滑模控制和同步。其他策略也被提及和讨论。
第七章对本书作了一些补充说明。
附录A列出了用于模拟第五章中描述的分数阶混沌系统的Matlab函数。
附录B列出了分数阶微积分中用到的函数的拉普拉斯变换和拉普拉斯逆变换表。
📚2 运行结果
部分代码:
function [T, Y]=FOChuaNR(parameters, orders, TSim, Y0)
%
% Numerical Solution of the Fractional-Order Chua's System
% with piecewise linear nonlinearity defined in function f_x()
%
% D^q1 x(t) = alpha(y(t) - x(t) - f(x))
% D^q2 y(t) = x(t) - y(t) + z(t)
% D^q3 z(t) = -beta y(t) - gamma z(t)
% where f(x) is defined as f_x(m0, m1, x);
%
% function [T, Y] = FOChuaNR(parameters, orders, TSim, Y0)
%
% Input: parameters - model parameters [alpha, beta, gamma, m0, m1]
% orders - derivatives orders [q1, q2, q3]
% TSim - simulation time (0 - TSim) in sec
% Y0 - initial conditions [Y0(1), Y0(2), Y0(3)]
%
% Output: T - simulation time (0 : Tstep : TSim)
% Y - solution of the system (x=Y(1), y=Y(2), z=Y(3))
%
% Author: (c) Ivo Petras (ivo.petras@tuke.sk), 2010.
%
% time step:
h=0.005;
% number of calculated mesh points:
n=round(TSim/h);
%orders of derivatives, respectively:
q1=orders(1); q2=orders(2); q3=orders(3);
% constants of Volta's system:
alpha=parameters(1); beta=parameters(2); gamma=parameters(3);
m0=parameters(4); m1=parameters(5);
% binomial coefficients calculation:
cp1=1; cp2=1; cp3=1;
for j=1:n
c1(j)=(1-(1+q1)/j)*cp1;
c2(j)=(1-(1+q2)/j)*cp2;
c3(j)=(1-(1+q3)/j)*cp3;
cp1=c1(j); cp2=c2(j); cp3=c3(j);
end
% initial conditions setting:
x(1)=Y0(1); y(1)=Y0(2); z(1)=Y0(3);
% calculation of phase portraits /numerical solution/:
for i=2:n
x(i)=(alpha*(y(i-1)-x(i-1)-f_x(m1,m0,x(i-1))))*h^q1 - memo(x, c1, i);
y(i)=(x(i)-y(i-1)+z(i-1))*h^q2 - memo(y, c2, i);
z(i)=(-beta*y(i)-gamma*z(i-1))*h^q3 - memo(z, c3, i);
end
for j=1:n
Y(j,1)=x(j);
Y(j,2)=y(j);
Y(j,3)=z(j);
end
T=h:h:TSim;
%
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。