💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
目录
💥1 概述
在交通管理中,车牌识别起着重要的作用。车牌识别是一个复杂的过程,主要涉及到车牌的检测和车牌字符的识别。在一些文献中,利用灰度直方图和模板匹配来进行车牌的定位和识别[1.2↓这些方法虽然对车牌识别取得了一些成果,但也有局限性,没有充分利用车牌固有的特征,没有考虑到分割符对字符分割的影响,对于污损的车牌和不同型号的车牌识别效果并不理想等。本文利用车牌的先验知识进行定位引进双阈值进行字符分割,利用段特征提取法提取特征向量作为神经网络的输入向量对上述问题提出了新的解决方法。
基于BP(Backpropagation)神经网络的车牌识别是一种利用人工神经网络技术对车辆车牌进行自动识别的方法。这种方法在20世纪90年代开始被广泛研究并应用于智能交通系统中,对于提高交通管理效率、实现自动化监控具有重要意义。下面是对基于BP神经网络车牌识别研究的一个简要介绍:
1. 系统流程
车牌识别系统通常包括以下几个步骤:
- 车牌定位:首先需要从复杂的背景中准确地定位到车牌区域,这通常通过图像预处理、边缘检测、形状分析等方法实现。
- 车牌字符分割:在定位到车牌区域后,需要将车牌上的字符分割开来,为后续识别做准备。这一步可能涉及投影分析、连通域分析等技术。
- 字符预处理:对分割出的字符进行归一化、二值化等处理,以便于神经网络处理。
- 特征提取:从预处理后的字符图像中提取有助于识别的特征,如纹理特征、形状特征等。
- 字符识别:使用BP神经网络对提取的特征进行分类识别,输出对应的字符。
2. BP神经网络在车牌识别中的应用
BP神经网络是一种多层前馈神经网络,它能够学习并处理非线性问题,因此非常适合用于模式识别任务,包括车牌字符识别。
- 网络结构:通常包括输入层、一个或多个隐藏层和输出层。输入层接收特征向量,输出层根据训练结果输出预测字符类别,隐藏层则负责特征的复杂变换。
- 训练过程:通过大量已标记的车牌字符图像及其对应标签对网络进行训练。利用反向传播算法调整网络权重,以减小实际输出与期望输出之间的误差。
- 泛化能力:训练好的BP神经网络能够对未见过的车牌字符图像进行有效的识别,展现出较好的泛化性能。
3. 面临的挑战
尽管BP神经网络在车牌识别方面取得了一定的成功,但仍存在一些挑战:
- 光照变化:不同的光照条件会对车牌图像的质量产生影响,进而影响识别率。
- 车牌污损:车牌如果出现磨损、遮挡或污染,可能会导致字符难以识别。
- 字符多样性:不同地区车牌的字体、尺寸和排列方式存在差异,增加了识别难度。
- 计算资源:BP神经网络的训练和推理过程相对计算密集,尤其是在面对大规模数据集时。
4. 总结
基于BP神经网络的车牌识别技术是智能交通系统中的一项重要研究内容,随着深度学习技术的发展,尤其是卷积神经网络(CNN)的兴起,车牌识别的准确性和效率得到了进一步提升。尽管如此,不断优化算法、提升系统的鲁棒性和适应性,仍然是该领域研究的重要方向。
📚2 运行结果
部分代码:
function [sbw,angle]=rotateimg(sbw1)
%%
%Step6 计算车牌水平投影,并对水平投影进行峰谷分析
histcol1=sum(sbw1); %计算垂直投影
histrow=sum(sbw1'); %计算水平投影
% figure,subplot(2,1,1),bar(histcol1);title('垂直投影(含边框)');%输出垂直投影
% subplot(2,1,2),bar(histrow); title('水平投影(含边框)');%输出水平投影
% figure,subplot(2,1,1),bar(histrow); title('水平投影(含边框)');%输出水平投影
% subplot(2,1,2),imshow(sbw1);title('车牌二值子图');%输出二值图
%对水平投影进行峰谷分析
meanrow=mean(histrow);%求水平投影的平均值
minrow=min(histrow);%求水平投影的最小值
levelrow=(meanrow+minrow)/2;%求水平投影的平均值
count1=0;
l=1;
hight=size(sbw1,1);
for k=1:hight
if histrow(k)<=levelrow
count1=count1+1;
else
if count1>=1
markrow(l)=k;%上升点
markrow1(l)=count1;%谷宽度(下降点至下一个上升点)
l=l+1;
end
count1=0;
end
end
markrow2=diff(markrow);%峰距离(上升点至下一个上升点)
[~,n1]=size(markrow2);
n1=n1+1;
markrow(l)=hight;
markrow1(l)=count1;
markrow2(n1)=markrow(l)-markrow(l-1);
% l=0;
for k=1:n1
markrow3(k)=markrow(k+1)-markrow1(k+1);%下降点
markrow4(k)=markrow3(k)-markrow(k);%峰宽度(上升点至下降点)
markrow5(k)=markrow3(k)-double(uint16(markrow4(k)/2));%峰中心位置
end
%%
%Step7 计算车牌旋转角度
%(1)在上升点至下降点找第一个为1的点
[m2,n2]=size(sbw1);%sbw1的图像大小
[m1,n1]=size(markrow4);%markrow4的大小
maxw=max(markrow4);%最大宽度为字符
if markrow4(1) ~= maxw%检测上边
ysite=1;
k1=1;
for l=1:n2
for k=1:markrow3(ysite)%从顶边至第一个峰下降点扫描
if sbw1(k,l)==1
xdata(k1)=l;
ydata(k1)=k;
k1=k1+1;
break;
end
end
end
else %检测下边
ysite=n1;
if markrow4(n1) ==0
if markrow4(n1-1) ==maxw
ysite= 0; %无下边
else
ysite= n1-1;
end
end
if ysite ~=0
k1=1;
for l=1:n2
k=m2;
while k>=markrow(ysite) %从底边至最后一个峰的上升点扫描
if sbw1(k,l)==1
xdata(k1)=l;
ydata(k1)=k;
k1=k1+1;
break;
end
k=k-1;
end
end
end
end
%(2)线性拟合,计算与x夹角
fresult = fit(xdata',ydata','poly1'); %poly1 Y = p1*x+p2
p1=fresult.p1;
angle=atan(fresult.p1)*180/pi; %弧度换为度,360/2pi, pi=3.14
%(3)旋转车牌图象
subcol = imrotate(sbw1,angle,'bilinear','crop'); %旋转车牌图象
sbw = imrotate(sbw1,angle,'bilinear','crop');%旋转图像
% figure,subplot(2,1,1),imshow(subcol);title('车牌灰度子图');%输出车牌旋转后的灰度图像标题显示车牌灰度子图
% subplot(2,1,2),imshow(sbw);title('');%输出车牌旋转后的灰度图像
% title(['车牌旋转角: ',num2str(angle),'度'] ,'Color','r');%显示车牌的旋转角度
【回复关键字:完整代码】
🎉3 参考文献
[1]苏科,陈志彬.基于BP神经网络的车牌识别系统[J].辽宁科技大学学报,2010,33(05):509-512.
[2]苏康友.基于BP神经网络车牌识别系统的研究[J].物联网技术,2021,11(11):22-23+28.DOI:10.16667/j.issn.2095-1302.2021.11.006.
[3]郑文光,王静波,高爽,翟葆朔.基于BP神经网络的车牌识别系统的设计[J].河北联合大学学报(自然科学版),2016,38(02):81-86.