基于LSTM的共享单车租赁预测研究(数据可换)(Python代码实现)

                      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于LSTM(长短期记忆网络)的共享单车租赁预测研究专注于使用LSTM模型对时间序列数据进行预测。LSTM是一种改进的循环神经网络(RNN),特别适用于处理和预测具有长期依赖关系的序列数据。下面是这一研究的一些关键点:

1. **LSTM概述**
LSTM是一种RNN变体,设计上能够解决传统RNN在处理长期依赖问题时的局限。LSTM通过三个主要的门控机制来控制信息流:
- **遗忘门**:决定丢弃哪些信息。
- **输入门**:控制新信息的加入。
- **输出门**:确定哪些信息会被输出到下一个时间步。

这些门控机制帮助LSTM在处理长期序列数据时,保持信息的长期依赖性和稳定性。

2. **研究步骤**

数据准备
- **数据收集**:包括共享单车的历史租赁数据、天气信息、节假日、事件等。
- **数据预处理**:处理缺失值、异常值,对数据进行归一化或标准化,以适应LSTM的要求。

模型构建
- **数据划分**:将数据分为训练集、验证集和测试集。
- **网络结构设计**:构建包含LSTM层的神经网络,一般包括:
  - **输入层**:接收输入特征。
  - **LSTM层**:处理序列数据,捕捉长期依赖关系。
  - **全连接层**:将LSTM层的输出映射到最终预测结果。
  - **输出层**:生成预测结果。
- **激活函数**:LSTM内部使用的激活函数通常包括Sigmoid和Tanh。

模型训练
- **训练过程**:使用训练数据训练LSTM模型,通过优化算法调整网络参数以最小化预测误差。
- **优化算法**:常用的优化算法包括Adam、RMSprop等。
- **损失函数**:通常使用均方误差(MSE)或其他适合回归任务的损失函数。

模型评估
- **验证与测试**:利用验证集调整模型超参数,并用测试集评估模型的最终性能。
- **评估指标**:包括均方根误差(RMSE)、平均绝对误差(MAE)等。

3. **应用效果**
使用LSTM进行共享单车租赁预测具有以下优势:
- **长期依赖捕捉**:LSTM能有效捕捉时间序列中的长期依赖关系,相比传统RNN具有更好的预测能力。
- **处理复杂模式**:能够处理复杂的时间序列模式,如季节性波动和趋势变化。
- **准确性**:在具有长期依赖性的时间序列数据上,LSTM通常能够提供较为准确的预测结果。

4. **挑战与改进**
- **数据质量**:预测效果高度依赖于数据的质量和完整性。需要处理数据中的噪声和异常值。
- **模型复杂性**:LSTM模型的训练复杂度较高,需要调整合适的超参数(如LSTM层数、隐藏单元数、学习率等)。
- **计算资源**:训练LSTM模型可能需要较高的计算资源,尤其是在数据量较大时。

5. **未来方向**
- **混合模型**:将LSTM与其他模型(如CNN、GRU、注意力机制等)结合,可能会进一步提升预测性能。
- **特征工程**:探索更多有助于预测的特征(如用户行为、交通流量等),以提升模型的预测能力。
- **实时预测**:研究如何提高LSTM模型的实时预测能力,满足实际应用中的需求。

📚2 运行结果

部分代码:

def evaluate_forecasts(Ytest, predicted_data, n_out):
    # 定义一个函数来评估预测的性能。
    mse_dic = []
    rmse_dic = []
    mae_dic = []
    mape_dic = []
    r2_dic = []
    # 初始化存储各个评估指标的字典。
    table = PrettyTable(['测试集指标','MSE', 'RMSE', 'MAE', 'MAPE','R2'])
    for i in range(n_out):
        # 遍历每一个预测步长。每一列代表一步预测,现在是在求每步预测的指标
        actual = [float(row[i]) for row in Ytest]  #一列列提取
        # 从测试集中提取实际值。
        predicted = [float(row[i]) for row in predicted_data]
        # 从预测结果中提取预测值。
        mse = mean_squared_error(actual, predicted)
        # 计算均方误差(MSE)。
        mse_dic.append(mse)
        rmse = sqrt(mean_squared_error(actual, predicted))
        # 计算均方根误差(RMSE)。
        rmse_dic.append(rmse)
        mae = mean_absolute_error(actual, predicted)
        # 计算平均绝对误差(MAE)。
        mae_dic.append(mae)
        MApe = mape(actual, predicted)
        # 计算平均绝对百分比误差(MAPE)。
        mape_dic.append(MApe)
        r2 = r2_score(actual, predicted)
        # 计算R平方值(R2)。
        r2_dic.append(r2)
        if n_out == 1:
            strr = '预测结果指标:'
        else:
            strr = '第'+ str(i + 1)+'步预测结果指标:'
        table.add_row([strr, mse, rmse, mae, str(MApe)+'%', str(r2*100)+'%'])

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]陈鑫,刘琦.基于时间序列分析的共享单车未来格局预测[J].现代营销(下旬刊), 2017(10):216-216.DOI:10.3969/j.issn.1009-2994.2017.10.174.

[2]焦志伦,金红,刘秉镰,等.大数据驱动下的共享单车短期需求预测——基于机器学习模型的比较分析[J].商业经济与管理, 2018(8):11.DOI:10.14134/j.cnki.cn33-1336/f.2018.08.002.

[3]甘明.基于深度学习的共享单车预测与调度研究[D].杭州电子科技大学,2022.

[4]靳海红,张帅.基于数据分析的共享单车模式与前景研究[J].商情, 2019.

🌈4 Python代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

  • 18
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,下面是基于LSTM的空调负荷预测Python代码参考: ```python # 导入相关的库 import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from keras.models import Sequential from keras.layers import Dense, LSTM import matplotlib.pyplot as plt # 读入数据 data = pd.read_csv('data.csv') # 数据预处理 scaler = MinMaxScaler(feature_range=(0, 1)) data_scaled = scaler.fit_transform(data) # 划分数据集 train_size = int(len(data_scaled) * 0.7) test_size = len(data_scaled) - train_size train_data, test_data = data_scaled[0:train_size,:], data_scaled[train_size:len(data_scaled),:] # 准备数据集 def create_dataset(dataset, look_back=1): X, Y = [], [] for i in range(len(dataset)-look_back): X.append(dataset[i:(i+look_back), 0]) Y.append(dataset[i + look_back, 0]) return np.array(X), np.array(Y) look_back = 7 # 每次使用前7天数据进行预测 train_X, train_Y = create_dataset(train_data, look_back) test_X, test_Y = create_dataset(test_data, look_back) # 将输入数据重塑为 [样本数, 时间步长, 特征数] 的三维张量 train_X = np.reshape(train_X, (train_X.shape[0], 1, train_X.shape[1])) test_X = np.reshape(test_X, (test_X.shape[0], 1, test_X.shape[1])) # 构建LSTM模型 model = Sequential() model.add(LSTM(units=50, return_sequences=True, input_shape=(1, look_back))) model.add(LSTM(units=50)) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(train_X, train_Y, epochs=100, batch_size=1, verbose=2) # 进行预测 train_predict = model.predict(train_X) test_predict = model.predict(test_X) # 反归一化处理 train_predict = scaler.inverse_transform(train_predict) train_Y = scaler.inverse_transform([train_Y]) test_predict = scaler.inverse_transform(test_predict) test_Y = scaler.inverse_transform([test_Y]) # 计算误差 train_score = np.sqrt(mean_squared_error(train_Y[0], train_predict[:,0])) print('Train Score: %.2f RMSE' % (train_score)) test_score = np.sqrt(mean_squared_error(test_Y[0], test_predict[:,0])) print('Test Score: %.2f RMSE' % (test_score)) # 绘制预测结果与真实值的曲线图 train_predict_plot = np.empty_like(data_scaled) train_predict_plot[:, :] = np.nan train_predict_plot[look_back:len(train_predict)+look_back, :] = train_predict test_predict_plot = np.empty_like(data_scaled) test_predict_plot[:, :] = np.nan test_predict_plot[len(train_predict)+(look_back*2)+1:len(data_scaled)-1, :] = test_predict plt.plot(scaler.inverse_transform(data_scaled), label='True') plt.plot(train_predict_plot, label='Train Predict') plt.plot(test_predict_plot, label='Test Predict') plt.legend() plt.show() ``` 这是一个简单的示例代码,您可以根据自己的实际情况进行调整和优化。同时,您需要根据实际情况修改读取数据的方式,以及数据预处理、模型训练和评估等步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值