基于BiGRU的自行车租赁数量预测研究(Matlab代码实现)

   💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、研究方法

三、研究应用与前景

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于BiGRU(双向门控循环单元)的自行车租赁数量预测研究是一个结合了深度学习技术的复杂课题。BiGRU作为RNN(循环神经网络)的一种变体,通过结合前向和后向的GRU(门控循环单元)层,能够捕捉序列数据中前后文的信息,从而提高模型对时间序列数据的预测能力。以下是对基于BiGRU的自行车租赁数量预测研究的一个概述:

一、研究背景与意义

随着城市公共交通的日益发展,自行车租赁系统作为一种环保、便捷的出行方式,受到越来越多城市居民的青睐。然而,如何准确预测自行车租赁数量,以便合理安排车辆调配和维护,成为自行车租赁公司面临的重要挑战。基于BiGRU的预测模型能够利用历史租赁数据中的时间序列特性,结合天气、季节、节假日等多种因素,实现对未来租赁数量的精准预测。

二、研究方法

  1. 数据收集与预处理
    • 收集自行车租赁公司的历史租赁数据,包括每日/每小时的租赁数量、天气情况(如温度、湿度、降水量)、节假日信息等。
    • 对数据进行预处理,包括缺失值处理、异常值处理、数据标准化等,以确保模型训练的有效性。
  2. 特征选择
    • 根据业务需求和数据特性,选择合适的特征作为模型输入。例如,时间特征(日期、时间戳)、天气特征(温度、湿度、降水量)、节假日特征等。
  3. 模型构建
    • 使用BiGRU构建预测模型。BiGRU通过前向和后向两个GRU层,分别捕捉序列数据中的正向和反向依赖关系。
    • 在BiGRU层之后,可以添加全连接层(Dense Layer)进行特征融合和输出预测结果。
    • 使用适当的激活函数(如ReLU、Sigmoid等)和损失函数(如均方误差MSE)进行模型训练。
  4. 模型训练与优化
    • 使用历史数据对模型进行训练,通过反向传播算法调整模型参数。
    • 采用交叉验证、早停等策略防止过拟合。
    • 根据验证集的表现调整模型结构和超参数,如学习率、批次大小、迭代次数等。
  5. 模型评估
    • 使用测试集对训练好的模型进行评估,计算预测准确率、平均绝对误差(MAE)、均方根误差(RMSE)等指标。
    • 与其他机器学习模型(如随机森林、支持向量机等)进行比较,分析BiGRU模型的优劣势。

三、研究应用与前景

基于BiGRU的自行车租赁数量预测模型具有广泛的应用前景。一方面,它可以帮助自行车租赁公司合理安排车辆调配和维护计划,提高运营效率和用户满意度;另一方面,它还可以为城市规划部门提供数据支持,促进城市交通系统的优化和可持续发展。此外,随着深度学习技术的不断发展和完善,基于BiGRU的预测模型在未来有望实现更高的预测精度和更广泛的应用场景。

需要注意的是,虽然BiGRU模型在自行车租赁数量预测方面表现出色,但其性能仍受到多种因素的影响,如数据质量、特征选择、模型参数等。因此,在实际应用中需要综合考虑这些因素,并不断优化模型以提高预测效果。

📚2 运行结果

 

部分代码:

function [mae,rmse,mape,error]=calc_error(x1,x2)

error=x2-x1;  %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])

 mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])

 mape=mean(abs(error)/x1);
 disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]李婷婷.城市公共自行车租赁点选址规划研究[D].北京交通大学,2010.DOI:10.7666/d.y1961114.

[2]陆朕.公共自行车租赁点车辆数的预测方法研究[D].南京师范大学,2015.DOI:10.7666/d.Y2857359.

[3]韩军红,魏越,侯礼兴.公共自行车租赁点规模优化[J].山西建筑, 2023, 49(22):57-61.

🌈4 Matlab代码实现

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值