👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
光热发电技术是一种新兴的可再生能源发电方式,未来将成为高比例可再生能源并网的重要支撑技
术[4]。光热发电的优越性主要体现在: 第一,光热电站常常配置了大容量的蓄热系统。蓄热系统能够平移光热能,拥有较好的可控性和调度能力。第二,含电加热装置的光热电站能够以可再生能源消纳可再生能源,吸收系统中多余电能并转换成热能,存储在蓄热系统中,提高了光热电站的运行灵活性[5]。第三,光热电站的汽轮机组拥有与燃气机组相媲美的调节能力,爬坡率最快能达到每分钟调节 20% 的装机容量,远高于传统火电机组每分钟调节 2% ~ 5% 的装机容量[6]。
利用光热发电技术解决高比例风电并网过程中出现的问题,是目前研究的热点之一。当前研究主要从风光互补性、蓄热系统配置和调度策略等三个方面展开。风光互补性方面,通过详细建立光热电站的数学模型,利用蓄热系统降低风光互补系统输出功率波动方差的同时获得最大并网效益[7],或者利用电加热装置促进互补系统的新能源消纳能力,减少新能源的弃电量[8-9]。蓄热系统配置方面,通过制定蓄热系统的充放热控制策略,建立电-热综合能源系统模型,提高系
统的调节能力,促进风电消纳[10-12]。调度策略方面,通过建立基于能量流的随机调度模型,研究了风电-光热联合系统的调度策略,可以显著降低风电出力的不确定性
一种光热-风电的系统结构如图 1 所示,包括光热电站的聚光集热系统、蓄热系统、电加热装置、发电系统和风电场的风机等部分。
计及N-k安全约束的含光热电站电力系统优化调度研究
一、N-k安全约束的定义及在电力系统中的重要性
N-k安全约束是电力系统可靠性评估的核心标准之一,指在系统中任意k个元件(如传输线、变压器、发电机等)同时发生故障时,系统仍能保持稳定运行的能力。其目标是提升系统对多重故障的鲁棒性,尤其在可再生能源高渗透率场景下,N-k约束的引入能够有效应对风电、光伏的波动性和电网元件的随机故障风险。
二、光热电站的运行特性及其对电力系统的支撑作用
-
运行模式与灵活性
光热电站通过熔盐储热系统实现多模式运行,包括纯发电、纯储热、储热与发电协同等6种模式,可根据辐照强度(DNI值)动态切换。例如,在DNI≥800W/m²时,光场热能可同时满足发电和储热需求;而在夜间或无光照时,储热系统可维持发电15小时以上。 -
调节能力与电网支撑
- 调峰调频:光热电站的升/降负荷速率达1.5-5%额定出力/min,与燃煤机组相当,且最小技术出力低至15-20%额定出力,适合深度调峰。
- 惯量支撑:通过同步发电机并网,提供电压和频率支撑,缓解风电/光伏并网导致的电网强度下降问题。
- 风光消纳:储热系统容量与风光弃电率呈负相关,储热时长增加可降低系统运行总成本(如储热容量从4h增至12h时,弃风率下降约20%)。
三、计及N-k安全约束的优化调度模型构建
-
目标函数
以系统运行成本最小化为目标,包括燃料成本、弃风弃光惩罚成本、备用容量成本等。例如: -
约束条件
- N-k安全约束:通过预想事故集生成N-k故障场景,确保故障后系统潮流不越限且负荷损失可控。例如,对118节点系统,仅需对2条线路应用动态线路评级(DLR),即可减少24%的发电/负荷削减。
- 光热电站约束:包括储热系统能量平衡(如熔盐温度限制)、发电功率爬坡速率、热-电转换效率等。
- 常规约束:功率平衡、机组出力上下限、备用容量需求等。
-
求解方法
采用混合整数线性规划(MILP)或二阶锥规划(SOCP)模型,结合Benders分解或列约束生成(C&CG)算法提升计算效率。典型案例中,基于MATLAB/YALMIP/CPLEX的14节点系统仿真显示,考虑N-k约束后系统可靠性提升15%,且经济性优于传统调度。
四、含光热电站的电力系统可靠性评估方法
-
模型构建
光热电站的可靠性需考虑子系统(聚光、储热、发电)的强迫停运概率及能量流关系,建立多状态概率模型。例如,采用序贯蒙特卡洛模拟计算期望缺供电量(EENS),评估系统在N-k故障下的风险。 -
置信容量评估
通过可靠性评估法确定光热电站可替代的常规机组容量。研究表明,储热时长从4h增至10h可使容量置信度提升30%,同时降低度电成本0.05元/kWh。
五、国内外研究现状与典型案例
-
国内研究
- 清华大学团队提出光热电站与风光联合调度模型,在青海某示范工程中实现弃风率降低12%。
- 中国电力科学研究院开发了基于N-k约束的鲁棒优化模型,在甘肃电网中验证了光热储能的调峰有效性。
-
国际研究
- 西班牙Gemasolar电站通过15小时储热实现24小时供电,成为全球首个商业化光热-光伏混合系统。
- 美国Redstone项目结合100MW光热与171MW光伏,采用N-1安全约束优化调度,年发电量提升18%。
-
方法对比
- 国内侧重实证分析与工程应用(如弃风率量化),国外注重理论创新(如分布式鲁棒优化)。
- 欧洲多采用随机优化处理风光不确定性,而中国偏向鲁棒优化以应对极端天气。
六、未来研究方向
- 多时间尺度耦合:将N-k安全约束与日前-实时调度结合,研究光热储能的跨时段调节潜力。
- 极端天气应对:结合台风、沙尘暴等灾害场景,建立动态N-k风险评估模型(如文献[3]提出的暂态失稳量化方法)。
- 人工智能应用:利用机器学习预测光热电站出力,优化N-k预想事故集的生成效率。
- 政策机制设计:探索光热参与辅助服务市场的补偿机制,提升其经济可行性。
总结
计及N-k安全约束的含光热电站电力系统优化调度,需兼顾经济性、安全性与环保性。光热电站凭借储热能力和同步支撑特性,成为提升高比例可再生能源系统可靠性的关键。未来研究需进一步融合多学科方法,推动理论创新与工程实践的深度结合。
📚2 运行结果
2.1 IEEE14节点
2.2 IEEE118节点
; % CSP 接入节点 同时 含有光伏、风电
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
%
mpc.gen = [ % 类型 Ramp_up Ramp_down min_up_time min_down_time FOR cost_start cost_const(¥M$/(MW*y)) cost_var($/MWh) area num
1 0 0 15 -5 0.955 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
4 0 0 300 -300 0.998 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
6 0 0 50 -13 0.99 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
8 0 0 300 -300 1.015 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
10 450 0 200 -147 1.05 100 1 550 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
12 85 0 120 -35 0.99 100 1 185 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
% 15 0 0 30 -10 0.97 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
18 0 0 50 -16 0.973 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
19 0 0 24 -8 0.962 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
24 0 0 300 -300 0.992 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
25 220 0 140 -47 1.05 100 1 320 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
26 314 0 1000 -1000 1.015 100 1 414 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
27 0 0 300 -300 0.968 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
31 7 0 300 -300 0.967 100 1 107 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
32 0 0 42 -14 0.963 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
34 0 0 24 -8 0.984 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
36 0 0 24 -8 0.98 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
40 0 0 300 -300 0.97 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
42 0 0 300 -300 0.985 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
46 19 0 100 -100 1.005 100 1 119 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
49 204 0 210 -85 1.025 100 1 304 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
54 48 0 300 -300 0.955 100 1 148 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
55 0 0 23 -8 0.952 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
56 0 0 15 -8 0.954 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
59 155 0 180 -60 0.985 100 1 255 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
61 160 0 300 -100 0.995 100 1 260 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
62 0 0 20 -20 0.998 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
65 391 0 200 -67 1.005 100 1 491 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
66 392 0 200 -67 1.05 100 1 492 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
69 516 0 300 -300 1.035 100 1 805.2 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
70 0 0 32 -10 0.984 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
72 0 0 100 -100 0.98 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
73 0 0 100 -100 0.991 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
74 0 0 9 -6 0.958 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
76 0 0 23 -8 0.943 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
77 0 0 70 -20 1.006 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
80 477 0 280 -165 1.04 100 1 577 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
85 0 0 23 -8 0.985 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
87 4 0 1000 -100 1.015 100 1 104 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
89 607 0 300 -210 1.005 100 1 707 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
90 0 0 300 -300 0.985 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
91 0 0 100 -100 0.98 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
92 0 0 9 -3 0.99 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
99 0 0 100 -100 1.01 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
100 252 0 155 -50 1.017 100 1 352 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
103 40 0 40 -15 1.01 100 1 140 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
104 0 0 23 -8 0.971 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
105 0 0 23 -8 0.965 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
107 0 0 200 -200 0.952 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
110 0 0 23 -8 0.973 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
111 36 0 1000 -100 0.98 100 1 136 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 35.71429 1 4;
112 0 0 1000 -100 0.975 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 57.14286 1 4;
113 0 0 200 -100 0.993 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 60.00000 1 4;
116 0 0 1000 -1000 1.005 100 1 100 0 0 0 0 0 0 0 0 0 0 0 0 2 15 8 12 12 0.31773 0.14286 0.03000 54.28571 1 4;
];
%% branch data
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]拜润卿,常平,刘文飞,汤奕.光热电站促进风电消纳的电力系统优化调度[J].电测与仪表,2020,57(22):1-6.DOI:10.19753/j.issn1001-1390.2020.22.001.
[2]李红伟,刘彤,唐鹏,吴金城.光热-光伏-风电-火电联合发电调度优化[J/OL].中国测试:1-8[2023-05-08].http://kns.cnki.net/kcms/detail/51.1714.TB.20211130.2048.025.html
[3]贾玲玲. 计及源荷不确定性的光热-光伏-风电联合发电系统协调优化调度策略[D].兰州理工大学,2022.DOI:10.27206/d.cnki.ggsgu.2022.000300.