💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文采用SFE模型对产消者竞价行为建模,确立了含多产消者的新型城镇配电系统日前现货市场交易机制,建立了含竞价博弈和优化调度的双层模型。上层模型追求产消者利润最大化,可确定多个产消者在配电网内的最优报价策略,下层模型考虑运行安全约束以及用户参与DR对系统进行最优经济调度﹐确定市场出清价格。最后﹐采用改进粒子群优化算法与(CPLEX求解器相结合的方法对该多主从博弈模型进行求解。
基于主从博弈的新型城镇配电系统产消者竞价策略研究
一、研究背景与意义
随着分布式能源(DG)的大规模接入和新型电力系统的建设,传统配电系统正逐步向主动配电系统(Active Distribution System, ADS)转型。新型城镇配电系统作为新型电力系统在中低压配电网的体现,具有能源供给清洁化、网架结构柔性化、用户负荷互动化等特点。产消者(Prosumer)作为既能生产又能消费能源的主体,在新型配电系统中扮演了关键角色。然而,产消者的分散性和利益诉求多样性对市场机制设计提出了挑战,而主从博弈(Stackelberg Game)因其能够有效描述领导者与跟随者的动态博弈关系,成为解决此类问题的核心工具。
二、主从博弈模型的理论基础
-
模型结构与分类
主从博弈是一种双层优化模型,上层领导者(如配电运营商)优先制定策略(如电价、服务套餐),下层跟随者(如产消者、微电网)根据上层策略调整自身行为(如用能计划、储能调用)。根据博弈者数量可分为:- 一主一从:如配电运营商与单一产消者集群的博弈。
- 一主多从:如虚拟电厂运营商与多产消者的互动。
- 多主多从:适用于多微电网系统的协同优化。
-
数学特性与求解方法
主从博弈模型通常具有非线性或非凸特性,需采用鲁棒优化处理不确定性(如风电出力波动),并结合智能算法(如改进教与学算法、粒子群优化)与数学规划工具(如CPLEX)嵌套求解。例如,文献[33]通过改进粒子群算法与CPLEX联合求解双层竞价模型,实现了产消者报价策略与系统调度的协同优化。
三、新型城镇配电系统的特点与挑战
-
系统特征
- 能源结构:以分布式新能源为主体,结合储能、柔性负荷等多要素。
- 网架形态:交直流混联、多端多环的柔性互联网络,支持双向潮流。
- 用户角色:产消者占比提升,具备需求响应(DR)能力与市场议价权。
-
核心挑战
- 不确定性管理:分布式电源出力波动、用户响应行为随机性需通过鲁棒优化或分布鲁棒机会约束处理。
- 利益协调:需平衡配电运营商的经济性目标(如运行成本最小化)与产消者的收益最大化诉求。
四、产消者竞价策略的模型构建
- 双层优化框架
- 上层模型:配电运营商以系统运行成本最低或灵活性需求满足为目标,制定电价或市场规则。例如,通过动态定价引导产消者调整用电计划。
- 下层模型:产消者基于上层策略优化自身竞价行为,包括:
- 报价策略:通过供给函数均衡(SFE)模型确定最优报价曲线。
- 能量管理:考虑分布式发电、储能调度及负荷灵活性。
- 关键约束条件
- 物理约束:配电网潮流安全、电压稳定。
- 市场约束:电价上下限、交易量限制。
- 行为约束:产消者的响应意愿与风险偏好。
五、典型应用与实证分析
-
案例1:IEEE 33节点系统仿真
文献[26]构建了含多产消者的双层主从博弈模型,通过日前市场交易机制验证了策略有效性。结果显示:- 经济性:系统总成本降低12%-15%,产消者收益提升10%以上。
- 稳定性:通过鲁棒优化将风电出力区间扩大20%,增强系统抗扰动能力。
-
案例2:农灌园区互动协调
文献[27]以148节点系统为测试场景,通过分时电价引导农灌园区优化灌溉用电。结果表明:- 峰谷差削减:负荷峰均比下降18%。
- 双赢效益:配电运营商运行成本减少8%,园区用电成本降低12%。
-
案例3:虚拟电厂能量共享
文献[37]提出虚拟电厂运营商与产消者的混合博弈策略,结合动态电价与分布鲁棒优化,实现:- 灵活性提升:可调节负荷控制能力达区域最大负荷的20%。
- 收益分配:产消者通过内部交易获利,运营商收益增长9%。
六、未来研究方向
-
模型扩展
- 纳入碳交易机制与条件风险值(CVaR),量化低碳目标与市场风险。
- 探索多时间尺度(日前-实时-日内)协同优化。
-
算法创新
- 结合深度学习与博弈论,预测产消者行为并动态调整策略。
- 开发完全去中心化的ADMM算法,保护隐私的同时提升计算效率。
-
政策与市场设计
- 设计适应P2P交易的监管框架,推动产消者社区自治。
- 完善灵活性资源(如储能)的市场化定价机制。
七、结论
基于主从博弈的产消者竞价策略通过动态定价、鲁棒优化与分布式算法,有效协调了新型城镇配电系统中多方主体的利益冲突,提升了系统经济性与灵活性。未来需进一步结合新型电力系统的发展需求,深化多市场耦合机制与智能化决策方法的研究,为“双碳”目标下的能源转型提供技术支撑。
📚2 运行结果
改进粒子群算法:
部分代码:
function [Gi,F,P_g,P_d,fi] = Up_fitnessfun(pop,index)
% clc
% clear
% pop = [60.03;75.03;69.31];
% index = 1;
%% 读取数据
parameters; % 读取相关参数
[P_d, fi, F, ~, ~, ~] = Down_fitnessfun(pop,index);
P_d = P_d/SB; % 转为标幺值
if index == 1
P_g = P_d + P_r(:,8) - P_l8'; % T=8时刻产销者出力
elseif index == 2
P_g = P_d + P_r(:,15) - P_l15'; % T=15时刻产销者出力
end
P_g = P_g*SB; % 转为实际值
Ci = a_D'.*(P_d.^2) + b_D'.*P_d + c_D';
Gi = fi.*P_g - s*P_g - Ci;
end
%% 1.粒子群算法迭代情况
disp(['运行时间为:',num2str(time0) , '秒'])
disp(['最优适应度值=',num2str(fitness_zbest)])
figure
plot(history_pso,'linewidth',1)
ylabel('最优适应度值')
xlabel('迭代次数')
%% 2.产销者竞价策略
[Gi,F,P_g,P_d,fi] = Up_fitnessfun(pop_zbest,index);
P_d = P_d*SB;
a_G = pop_zbest;
disp('********************产销者竞价策略********************')
for k =1:Nk
fprintf('产销者%d:\naG = %.2f Pg = %.2fMW Gi = %.2f美元 Pd = %.2fMW fi = %.2f美元\n',k,a_G(k),P_g(k),Gi(k),P_d(k),fi(k))
end
%% 3.支路网损
[~, ~, ~, P_loss, dP_cj, Uj] = Down_fitnessfun(pop_zbest,index);
P_loss = P_loss(1:32)*SB*1e3;
figure
plot(P_loss,'linewidth',1)
xlabel('支路编号')
ylabel('线路损耗/kW')
%% 4.节点电压
figure
plot(Uj,'linewidth',1)
xlabel('节点编号')
ylabel('节点电压幅值/pu')
%% 5.负荷曲线
figure
if index == 1
plot(PL8*SB,'linewidth',1)
elseif index == 2
plot(PL15*SB,'linewidth',1)
end
xlabel('节点编号')
ylabel('负荷功率/MW')
%% 6.产销者新能源出力
for k = 1:Nk
figure
plot(Ppv(k,:)*SB,'linewidth',1)
hold on
plot(Pwt(k,:)*SB,'linewidth',1)
xlabel('时间/h')
ylabel('功率/MW')
legend('光伏出力','风电出力')
title(['产销者',num2str(k),'新能源出力曲线'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]陈修鹏,李庚银,夏勇.基于主从博弈的新型城镇配电系统产消者竞价策略[J].电力系统自动化,2019,43(14):97-104.