计及光伏电站快速无功响应特性的分布式电源优化配置方法(Matlab代码实现)

  👨‍🎓个人主页

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

计及光伏电站快速无功响应特性的分布式电源优化配置方法研究

1. 分布式电源优化配置的基本方法

2. 光伏电站快速无功响应特性的定义与技术实现

3. 现有研究方法与效果评估

4. 光伏电站快速无功响应在电力系统稳定性中的作用机制

5. 数学模型的构建方法

6. 国内外研究综述

7. 结论与展望

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、数据、文章下载


💥1 概述

文献来源:

在绝大部分有关分布式电源优化配置问题的文献中,光伏电站都被视作单纯的有功功率源。仅有的少量的文献,如文献[125]和[126],考虑了光伏电站的无功功率输出对配电系统中母线电压的调节作用。实际上,近年来PV-STATCOM技术1t2'的发展使得光伏逆变器能够提供快速、及时的无功功率输出,解决的问题也不再仅仅局限于母线电压调节等调度问题。文献[130,131]介绍了STATCOM的快速无功响应特性在缓解电压暂降现象,以及瞬时故障后电网恢复过程中的积极作用。基于这些研究,本章在分布式电源的优化配置问题中计及了光伏电站的快速无功响应特性,以体现 PV-STATCOM这一新技术对分布式电源配置方案的影响,进而有效响应了近年来因产业升级而日渐增加的敏感负荷的用电需求。
本章选取了光伏电站、微型燃气轮机两种典型的分布式电源进行优化配置问题的研究,通过构建加权电压支撑能力指标以表征配电系统中光伏电站对敏感负荷节点的电压支撑能力,并将其嵌入到分布式电源优化配置模型中以求解最优的分布式电源安装位置和安装容量。算例分析部分基于IEEE-33节点配电系统的优化结果,以及对应的电压暂降过程仿真,充分证明了本章研究的价值和意义。
作为分布式电源优化配置问题研究的基础,本节详细阐述了连续时域的离散化策略、分布式电源出力的建模方法、配电系统负荷的建模方法等内容2.2.1连续时域的离散化及相关简化策略分布式电源优化配置问题是一个连续时间尺度上的复杂问题,且分布式电源的出力,以及电力负荷随着时间的推移是不断波动的。这种时序波动性大大增加了分布式电源优化配置模型的复杂程度和求解难度,甚至出现无法有效求解的情况。为了提高分布式电源优化配置问题的求解效率,准确、高效地决定分布式电源的安装位置和安装容量,本章应用了如下一些合理的简化策略:
(l)使用4个分别代表春、夏、秋、冬的典型日表征优化配置问题中的自然年。(2)将每个典型日离散化为24个时间断面,每个时间断面代表l小时。
(3)对于每个时间断面而言,分布式电源出力以及电力负荷的取值均为相应的l小时内的峰值,也就是说,分布式电源出力以及电力负荷在Ⅰ小时内的波动是被忽略的,从而每个时间断面是一个确定性的场景。
详细文章讲解见第4部分。

计及光伏电站快速无功响应特性的分布式电源优化配置方法研究

1. 分布式电源优化配置的基本方法

分布式电源(DG)优化配置的核心目标是通过合理规划电源位置、容量和运行策略,实现系统经济性、稳定性和可靠性等综合效益的最大化。典型的优化流程包括以下步骤:

  • 输入数据:涵盖技术经济参数(如光伏逆变器成本、效率)、电力需求曲线、现有电网拓扑结构及储能配置。
  • 模型构建:采用混合整数线性规划(MILP)、多目标优化算法(如改进海鸥算法、蚁狮算法)等数学工具,建立包含目标函数和约束条件的优化模型。
  • 目标函数:常见目标包括最小化年度运行成本、降低网损、减少电压偏差,或兼顾经济性与环保性(如碳减排)。
  • 约束条件:涉及功率平衡、电压波动限值(如±10%)、可再生能源渗透率上限及设备容量限制。
  • 输出结果:输出最优DG配置方案、储能系统容量建议及经济性分析报告。

算法创新:近年研究聚焦于改进元启发式算法。例如:

  • 改进海鸥算法(ISOA) :通过精英反向学习策略增强种群多样性,结合莱维飞行策略避免局部最优,在降低网损和电压偏差方面表现优于传统算法。
  • 蚁狮优化算法:模拟蚁狮捕猎行为,引入损耗和电压敏感系数,实现多目标优化,在IEEE-33总线系统中功率损耗降低率达23%。
2. 光伏电站快速无功响应特性的定义与技术实现

定义:根据国家标准GB/T 34931-2017,光伏电站动态无功响应时间指从并网点电压异常触发到无功输出达到目标值90%所需的时间,通常要求≤30ms。

技术实现

  • 逆变器控制技术:光伏逆变器通过实时监测电网电压、频率,采用PQ控制或V/f控制模式,实现毫秒级无功调节。例如,淮安金湖光伏电站通过群控逆变器实现动态无功响应时间<30ms。
  • SVG/SVC装置:静止无功发生器(SVG)采用全控型电力电子器件(如IGBT),动态响应时间<5ms,可提供连续无功补偿,抑制电压闪变和谐波。
  • 混合补偿策略:结合逆变器与SVG的优势,在光照充足时优先使用逆变器调压,光照不足时启用SVG,降低设备投资成本。
3. 现有研究方法与效果评估

研究方法

  • 多目标优化模型:如蔡浩等提出的模型,以功率损耗最小化和电压稳定性为双目标,结合改进蚁狮算法求解,实验显示网损降低18.7%,电压偏差减少32%。
  • 分层优化架构:丁明团队提出交直流微电网群两层模型,上层通过节点耦合度划分集群,下层以综合成本最小为目标优化配置,实现分布式电源就地消纳率提升15%。
  • 鲁棒优化与分布式计算:翟苏巍等采用自适应ADMM和C&CG算法处理源荷不确定性,在云南电网案例中减少网络损耗12%,提升求解效率40%。

效果评估指标

  • 经济性:年度成本节约(如投资回收期缩短至5年以下)。
  • 技术性:网损降低率(典型值10%~25%)、电压合格率(目标≥99%)。
  • 动态性能:无功响应时间、故障穿越能力(如低电压穿越期间提供1.5倍额定无功支撑)。
4. 光伏电站快速无功响应在电力系统稳定性中的作用机制
  • 电压支撑:在电网故障(如短路)时,光伏电站通过快速注入容性无功,抬升并网点电压,防止电压崩溃。例如,华为光储发电机在青海测试中提供3倍短路容量,显著提升暂态稳定性。
  • 频率调节:通过一次调频功能(响应时间<0.15s),调节有功出力平抑频率波动。
  • 谐波抑制:SVG通过实时检测谐波分量,生成反向谐波电流,将THD(总谐波畸变率)控制在3%以内。
5. 数学模型的构建方法

核心模型要素

  • 目标函数:例如综合成本最小化(包含投资成本CinvCinv​、运维成本ComCom​、网损成本ClossCloss​):

创新建模方法

  • 加权电压支撑能力指标:基于灵敏度分析,量化光伏电站对关键负荷节点的电压恢复贡献,公式为:

    其中αiαi​为节点i的权重系数,通过雅可比矩阵求逆计算灵敏度。

  • 二阶锥松弛(SOCP) :将非凸的潮流方程转换为凸优化问题,提升求解速度和全局最优性。

6. 国内外研究综述

国内研究进展

  • 算法优化:肖添等改进海鸥算法,在四川电网案例中网损降低22%;蔡浩团队应用蚁狮算法,实现多目标协同优化。
  • 技术集成:丁明等提出交直流微电网群优化模型,促进分布式电源消纳;李可雨团队开发的光伏快速控制系统通过现场验证。

国际研究动态

  • 模型创新:Zou等提出混合灰狼优化与多目标粒子群算法,在IEEE-33节点系统中综合成本降低18%。
  • 技术标准:IEC 62786系列标准规范了分布式电源接入电网的无功调节要求,推动SVG和逆变器技术的标准化应用。
7. 结论与展望

当前研究已证实,计及光伏快速无功响应的优化配置可显著提升电网经济性和稳定性。未来方向包括:

  • 数字孪生技术:构建高精度电网仿真模型,实现实时优化。
  • 人工智能融合:结合深度学习预测光照和负荷波动,优化日前调度策略。
  • 政策驱动:完善动态无功补偿的激励政策,促进SVG和智能逆变器的大规模部署。

通过上述多维度研究,分布式电源优化配置方法将更好地适应高比例可再生能源电网的发展需求,为“双碳”目标提供技术支撑。

📚2 运行结果

 

 

 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]罗李子. 互动环境下分布式电源与电动汽车充电站的优化配置方法研究[D].东南大学,2019.DOI:10.27014/d.cnki.gdnau.2019.000278.

🌈4 Matlab代码、数据、文章下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值