👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
针对能源危机和环境不断恶化的情形下,以光伏发电、风力发电、潮汐能等清洁能源发电技术被广泛应用,其发电方式便捷、满足负荷增长需求、绿色友好以及便于偏远地区供电的特点被人们大量发展利用。DG大量并入配电网络会有一些负面效应,会使故障后短路电流的大小及方向发生改变,分布式发电机节点会使配电网的结构变得复杂,这不仅导致传统继电保护装置、故障区段的定位算法、以及恢复重构研究方法遇到难题,而且还会使电网安全性、电能稳定性以及自愈能力的高质量要求越来越严格。虽然“十三五”期间要求大力发展配电自动力化水平,提高配电网的投资力度,但是配电网络结构日益复杂多变,工厂生产和居民用电上升尤其分布式发电技术的不断渗透,使配电系统发生故障、工厂居民停电的问题时有发生。对配电网结构的日益复杂、继电保护装置的灵敏度下降以及容易发生拒动或者误动,所以配电网也随之出现了以下问题[4.5]。
(1)电网稳定性差:供电的稳定性受电网各个部分影响,因配电系统与负荷是直接相连的,生产生活中大部分的居民都是使用单电源供电,如果某段线路出现故障,因没有备用电源供电,则不能及时的转供电会导致停电时间变长,电力设备的老化及故障问题也会使配电网系统的稳定性变差。
(2〉故障处理方法不合理:因每个区域的地理位置不一样,所以输配电的线路也不同,无法为配电系统配备统一的智能检测设备。有些地区甚至提供不了检测装置,当遇到系统发生故障时,只能依靠个人的经验来判断故障发生的区段和原因,所以这种方法的可靠性特别低。
(3)电能输送质量低:对于电能输送的要求是可靠、保质、经济。配电线路的复杂性和低电压水平将增加配电网络的电力损耗和成本,损耗过大会直接影响电网频率,使供配电系统不能有效运作,这就有必要合理降低电压级数和系统阻抗,同时保证系统三相电压平稳不越限。
随着传统资源的日益稀缺,风力发电、光伏发电等绿色环保能源发电技术得到快速发展,其接入配电系统能够有效提升电能质量和能源利用率。但配电系统的潮流方向和拓扑结构也会随分布式电源(Distributed Generation,DG)的并入而发生改变,导致传统的故障定位方法和恢复重构方法效果不佳。因此,以分布式电源并入配电网为研究对象,对故障后快速准确定位与恢复方法的研究势在必行。分析分布式电源并入配电网后对故障定位、潮流计算的影响。分布式电源接入后会使传统的继电保护方法失去选择,容易发生保护误动或者拒动,使配电网的可靠性受到影响,故障定位将会受到影响;给出以节点分层为概念的前推回代潮流计算,通过IEEE33节点配电系统验证DG接入对配电网电压和网络损耗的影响。针对含有分布式电源的故障区段定位问题,提采用粒子群算法故障区段定位方法,建立配电网故障区段数学模型,对配电线路中的单重故障、多重故障及位置信息畸变进行仿真;因单目标智能优化算法存在早熟和局部收敛的缺陷,因此又采用优化后的多目标粒子群算法进行相同仿真分析,以验证该算法的合理有效性。
一、粒子群优化算法(PSO)的基本原理
PSO是一种基于群体智能的启发式优化算法,模拟鸟群或鱼群的协作觅食行为。其核心是通过粒子间的信息共享和迭代搜索寻找最优解。
1. 算法流程
-
初始化:随机生成粒子群,每个粒子代表一个潜在解(如故障位置或参数组合),并赋予初始速度和位置。
-
适应度评估:通过目标函数(如故障指标误差)计算每个粒子的适应度值。
-
速度和位置更新:
其中,w为惯性权重,c1,c2为学习因子,r1,r2为随机数。
-
迭代终止:达到预设迭代次数或适应度收敛时停止。
2. 特点与优势
- 无需梯度信息:适用于非凸、非线性优化问题。
- 记忆性:保留个体历史最优(pbestpbest)和全局最优(gbestgbest)信息。
- 参数少、收敛快:相比遗传算法,无需交叉和变异操作,结构更简单。
二、传统电力系统故障定位方法的局限性
传统方法主要依赖电气参数分析,存在以下问题:
- 阻抗法:通过测量线路阻抗推算故障距离,但受过渡电阻、线路参数误差影响大,精度受限。
- 行波法:利用故障产生的行波信号定位,但需高频采样设备,且对高阻故障不敏感。
- 差动保护:依赖两端电流同步测量,通信延迟或数据丢失时可靠性下降。
- 计算复杂度高:传统算法在复杂配电网(如含分布式电源)中易陷入局部最优,收敛速度慢。
三、基于PSO的故障定位研究现状
1. 改进策略
- 参数优化:采用自适应惯性权重(如线性递减)平衡全局与局部搜索能力。
- 混合算法:
- PSO-GA:结合遗传算法的变异机制,避免早熟收敛。
- 免疫-PSO:引入抗体浓度调节,提升多样性,增强容错性。
- 二进制编码:将故障区段状态编码为0/1向量,简化适应度函数设计。
2. 容错性与适应性
- 信息畸变处理:在FTU(故障终端单元)数据畸变时,仍能通过适应度函数加权修正准确定位。
- 分布式电源(DG)兼容性:通过拓扑分区(如主干网与旁路网络)降低DG接入的影响。
3. 典型案例
- IEEE33节点系统:
- 单点故障定位准确率达97%以上,多点故障容错性显著优于传统方法。
- 改进的SFLA-BPSO算法将寻优速度提升60%以上。
- 含DG配电网:
- 采用分层控制策略,PSO结合穷举法快速定位故障区段,适应复杂网络结构。
四、故障区段划分的关键技术难点
- 区段边界模糊:阻抗相角周期性变化导致区段边界判定困难,需引入交叉数值表提升可靠性。
- 过渡电阻影响:高阻故障导致阻抗特性偏移,需构建“同调电阻”模型修正测距误差。
- 多电源干扰:DG接入改变故障电流方向,需结合同步相量测量(PMU)实时更新拓扑。
- 通信异常:PMU通信中断时,需动态调整量测区段划分,保障定位连续性。
五、应用案例与效果评估
1. IEEE33节点系统仿真
- 场景设置:单相接地、两相短路等故障类型,故障电阻0-100Ω。
- 结果:
- PSO平均定位误差<1%,收敛时间<50次迭代。
- 改进BPSO算法在FTU信息畸变时仍保持97%准确率。
2. 含DG的配电网
- SFLA-BPSO算法:在9节点和33节点系统中,准确度分别提高22.7%和393.1%,寻优速度提升60%以上。
- 经济性分析:优化DG容量与位置后,有功损耗降低30%-50%,电压稳定性提升。
六、未来研究方向
- 多目标优化:同时优化定位精度、计算速度和容错性。
- 深度学习融合:利用LSTM网络处理时序故障数据,提升动态适应能力。
- 5G通信集成:基于低延迟通信架构,实现实时拓扑更新与分布式协同定位。
结论
PSO算法在电力系统故障定位中展现出显著优势,尤其在复杂配电网和含DG场景下,其全局搜索能力与容错性优于传统方法。未来通过算法改进与多技术融合,有望进一步提升定位精度与实时性,为智能电网的可靠运行提供支撑。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]马勇. 分布式电源接入配电网故障定位与恢复方法研究[D].宁夏大学,2022.DOI:10.27257/d.cnki.gnxhc.2022.001792.