💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
建筑物中的电梯系统面临着不可预测的客流带来的挑战,这使得电梯调度变得复杂,难以优化其运行。现有的大多数算法都是基于模式识别开发的,可能在模式难以分类的场景下效果不佳,尤其是当电梯运行涉及不确定的人类行为时。为了解决这一问题,本文提出了一种考虑长期性和多层高峰,并重点关注高峰楼层的时间相关优化模型。该模型考虑了电梯的动态调度模式,并将客流方向表示为关系矩阵。所提出的方向优化方法包含多个功能,用于指导迭代方向,并基于经典算法提高迭代过程的效率。该方法还通过调整迭代过程确保了马尔可夫链的稳定性。所提出方法的可行性得到了相关理论的支持,实验结果表明,方向优化算法的性能优于经典算法,能够在较低成本下实现电梯的卓越运行效率。本文为开发适用于复杂交通模式的电梯调度高效算法做出了贡献,可以提高建筑物中电梯群系统的性能。所提出的方法不仅限于电梯,还可以扩展到其他有流量需求的交通系统。
本文比较了三种经典算法的性能及其电梯群控系统上下文中的方向优化。经典的算法包括遗传算法(GA)、模拟退火(SA)、粒子群优化算法(PSO),而其改进版本是方向优化遗传算法(DOGA)、方向优化模拟退火(DOSA)和方向优化粒子群优化(DOPSO)。禁忌搜索(TS)也包括在内,用于比较。
电梯群控系统(EGCS)通常依赖模式识别来调度电梯,将电梯状态归类为预定义的模式,如早高峰和午餐高峰。然而,这种方法可能难以适应用途多样的建筑,使得有效优化电梯调度变得具有挑战性。问题在于如何找到高峰时段的客流量。
在当前EGCS的实现中,经常采用人像识别技术。摄像头监控楼层的乘客移动,但由于高度重叠,准确计算乘客数量可能很困难。因此,用范围来描述客流量提供了更准确的表示。
电梯完成一次行程后,会收集一组客流量数据。例如,可能有4-6名乘客在第15层上电梯,1-3名乘客在第10层上电梯,1-3名乘客在第3层和第1层下电梯。这些范围在一定时间内保持不变,从而可以确定可能的方向。每台电梯在运行后都会生成一组范围,每组包含多种可能性。因此,利用范围之间的交集来近似实际的客流量。
此代码用于测试方向估计。它分解并分析不同范围之间的关系,旨在根据摄像头收集的范围确定可能的方向,从而提高EGCS的效率。在有四台电梯的情况下,进行三次交集运算。
测试使用四个范围级别来描述乘客数量,其中级别4代表最大容量。
方向估计简化了以下过程:
-
每台电梯完成行程后,摄像头捕获一组范围级别,代表高峰楼层的客流量。
-
方向估计的目标是确定每台电梯的可能方向及其相应的数量。
-
采用交集运算来细化估计的方向,使其更接近实际的客流量。
结果表明,经过多次交集运算后,潜在客流量的数量显著减少,表明在估计客流量方向方面的准确性有所提高。
📚2 运行结果
部分代码:
%% Generate results for SA
%% Uncomment these lines of code and changing the value of 'al_num' if necessary
% tic
% [~,best_value]=SA_dir(ele_num,floor_num,busy_floor,floor_direction,peak_rate,direction,ele_cur,ele_des,ele_dir);
% c_times(i,al_num*(j-1)+c)=toc;
% comparsion(i,al_num*(j-1)+c)=best_value;
% c=c+1;
%% Generate results for DOSA
%% Uncomment these lines of code and changing the value of 'al_num' if necessary
tic
[~,best_value]=SA_dir(ele_num,floor_num,busy_floor,floor_direction,peak_rate,direction,ele_cur,ele_des,ele_dir,relation_mat);
c_times(i,al_num*(j-1)+c)=toc;
comparsion(i,al_num*(j-1)+c)=best_value;
c=c+1;
%% Generate results for PSO
%% Uncomment these lines of code and changing the value of 'al_num' if necessary
% tic
% [best_value]=PSO_dir(ele_num,floor_num,busy_floor,floor_direction,peak_rate,direction,ele_cur,ele_des,ele_dir);
% c_times(i,al_num*(j-1)+c)=toc;
% comparsion(i,al_num*(j-1)+c)=best_value;
% c=c+1;
%% Generate results for DOPSO
%% Uncomment these lines of code and changing the value of 'al_num' if necessary
tic
[best_value]=PSO_dir(ele_num,floor_num,busy_floor,floor_direction,peak_rate,direction,ele_cur,ele_des,ele_dir,relation_mat);
c_times(i,al_num*(j-1)+c)=toc;
comparsion(i,al_num*(j-1)+c)=best_value;
c=c+1;
%% Generate results for GA
%% Uncomment these lines of code and changing the value of 'al_num' if necessary
% tic
% [best_value]=GA_(ele_num,floor_num,busy_floor,floor_direction,peak_rate,direction,ele_cur,ele_des,ele_dir);
% c_times(i,al_num*(j-1)+c)=toc;
% comparsion(i,al_num*(j-1)+c)=best_value;
% c=c+1;
%% Generate results for DOGA
%% Uncomment these lines of code and changing the value of 'al_num' if necessary
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]李建民.基于交通模式识别的电梯调度算法研究[J].自动化与仪器仪表, 2008(1):4.
[2]张洪成,张永林,潘薇,等.基于图像的电梯群控系统优化调度的研究[J].计算机应用与软件, 2023, 40(10):185-190.
[3]李素芳.基于粒子群优化算法的电梯群控系统的调度研究[D].河南科技大学,2012.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取