👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
博弈论在电动车和电网系统中分布式模型预测控制(DMPC)研究综述
💥1 概述
电动汽车(EV)将在未来的交通系统中广泛使用。尽管这些电动汽车不受控制的充电将威胁电网的稳定性,但兼容的能源交易政策可以为电网提供有益的服务,并保持系统的可持续性。本文利用大宗费率关税,引入了批发定价政策。利用多目标方法同时解决成本降低和负载均衡服务的问题。由于集中式问题的计算复杂度很高,因此采用了博弈论方法来设计电动汽车的分散控制器。此外,引入了MPC方法,以处理未来几个小时内系统状态的计划外偏差。仿真结果验证了所提方法能够有效改造系统性能。
分布式发电作为解决现代城市未来电网问题的关键解决方案,在过去几年中得到了极大的关注[1]。随着过去几十年双向充电器的快速发展,电动汽车充电和放电的想法已经发展出一种新颖的车辆到电网(V2G)系统概念。在V2G系统中,在电动汽车中实现的电池被视为可被电力系统利用的移动储能,以提供各种辅助服务,如负载均衡、调峰、频率调节等。到电网。这些服务的主要思想源于这样一个事实,即电动汽车可以在非高峰时段充电并在关键时段放电,为电网提供所需的能量[2]。但是,只有当有许多电动汽车车主有兴趣参与此类服务时,所有 V2G 服务才可能随时可用。通过参与V2G辅助服务来降低充电成本和提供收入是两个有效的鼓励措施,可以说服电动汽车车主为V2G服务做出贡献[3]。
在最近的文献中,已经引入了许多基于优化的方法,例如线性规划(LP)和二次规划(QP)来解决电动汽车充电管理问题。在[4]中,作者提出了一个LP问题,以最小化电动汽车车主的充电成本并最大化聚合商的利润。负载均衡服务在 [5] 中被解释为 QP 问题,以最小化电网负载曲线的方差。[6]中讨论了未来小时电价和需求的不确定性,作者提出了一种模型预测控制(MPC)方法来处理频率调节服务中的这个问题。在[2]中探讨了考虑V7G系统中目标冲突的想法,其中采用了加权和方法来解决多目标优化问题,其中提供谷填充服务以及降低充电成本。
博弈论作为对像V2G这样的复杂系统代理之间的相互作用进行建模的令人信服的发明,已被作者有效地应用于[8]来解决负载均衡问题解决方案的计算复杂性。本研究将负载均衡服务的集中解转化为相应博弈的均衡收敛到原集中式负载均衡问题的解的分散问题。电力需求、电价以及电动汽车在充电站(或智能建筑)中的存在和参数等未来小时信息的不确定性是这项工作中缺失的组成部分。此外,电动汽车的电费和充电成本在[8]中没有考虑。
本文的主要贡献是提供一个分布式框架,以解决V2G系统的冲突目标,例如在未来小时信息存在不确定性的情况下降低充电成本和负载均衡服务。为此,我们应用了一种通用的博弈论方法来解决MPC框架中相应的多目标问题。
博弈论在电动车和电网系统中分布式模型预测控制(DMPC)研究综述
一、博弈论与分布式模型预测控制的融合基础
-
博弈论的核心框架
博弈论通过分析多主体间的策略互动,为复杂系统的协调控制提供理论支持。动态博弈论尤其适用于具有时序决策特征的场景,其核心包括参与者对利益的态度、策略选择及信息获取能力。在电动车与电网系统中,电网运营商、充电站、车辆用户等主体可视为博弈参与者,通过策略优化实现能源调度与成本控制。 -
分布式模型预测控制(DMPC)的原理
DMPC将集中式优化问题分解为多个子系统的局部优化,通过信息交换协调全局目标。其关键步骤包括建模、分布式优化、滚动优化与通信协调。例如,在电动车充电调度中,每个充电桩作为独立子系统,基于本地预测模型和博弈策略调整充电计划,同时通过通信网络与其他节点协同。 -
结合博弈论与DMPC的优势
博弈论为DMPC提供了多目标冲突协调机制。例如,通过设计非合作博弈(如纳什均衡)或主从博弈(如Stackelberg模型),解决电网负荷均衡与用户充电成本最小化的矛盾。研究表明,这种结合能显著降低计算复杂度,并实现与集中式控制相近的全局最优性。
二、电动车与电网系统的交互机制及挑战
-
车网互动(V2G)技术
V2G技术允许电动车作为分布式储能单元,根据电网需求进行充放电。其核心是通过双向通信实现能量调度,例如在电网低负荷时充电、高负荷时放电以获取电价差收益。这种双向互动需要动态定价策略和实时响应机制,为博弈论的应用提供了场景。 -
控制模式与框架
- 集中式控制:由调度中心统一管理,但面临通信压力和大规模计算瓶颈。
- 分层式控制:通过聚合商分担数据统计与功率分配任务,降低通信复杂度,更适用于分布式博弈策略。
- 主动调控框架:结合需求响应与主动充放电策略,支持调频、调压等辅助服务。
-
关键挑战
- 动态性与不确定性:电动车充电需求的时空随机性、可再生能源出力波动等增加了系统建模难度。
- 利益冲突:电网追求负荷均衡,用户追求充电成本最小化,需通过博弈模型协调。
- 通信可靠性:DMPC依赖实时数据交换,通信延迟或故障可能导致策略失效。
三、博弈论在车网DMPC中的典型应用模型
-
Stackelberg博弈模型
在电网与电动车用户的互动中,电网作为领导者制定电价策略,用户作为跟随者调整充电计划。例如,文献[24]提出基于Stackelberg博弈的充电管理框架,电网通过预测用户响应优化电价,用户基于电价调整充电时间以降低成本。仿真表明,该模型能有效降低峰谷差并提高电网稳定性。 -
非合作博弈与纳什均衡
多充电站之间的竞争可通过非合作博弈建模。每个充电站独立优化定价策略,最终收敛至纳什均衡状态,避免恶性竞争。例如,蒙特卡洛模拟显示,博弈规划后充电站分布更均衡,用户等待时间减少。 -
演化博弈与合作博弈
- 演化博弈:适用于用户行为动态调整的场景。例如,用户根据历史电价和他人策略逐步优化充电选择,最终形成稳定策略分布。
- 合作博弈:充电站与配电网通过联盟博弈共享资源,提升整体收益。文献[24]提出基于合作博弈的能源与备用共享机制,验证了其在电力批发市场中的经济性。
四、技术难点与解决方案
-
多主体协调复杂性
- 问题:电动车数量庞大且策略空间高维,传统优化算法难以收敛。
- 方案:采用分解协调算法(如ADMM)将全局问题拆分为局部子问题,结合博弈论迭代求解。
-
鲁棒性与抗干扰能力
- 问题:通信故障或恶意攻击可能导致策略偏差。
- 方案:引入鲁棒DMPC框架,通过管状约束和自适应终端集应对扰动。例如,文献[37]提出的鲁棒DMPC方法在未知扰动下仍保持闭环稳定性。
-
实时性与计算效率
- 问题:大规模系统的在线优化延迟可能影响控制效果。
- 方案:采用事件触发机制(ET-DMPC),仅在预测误差超过阈值时更新策略,减少计算频率。
五、未来研究方向
-
智能算法融合
结合强化学习与博弈论,实现动态环境下的自适应策略优化。例如,深度神经网络可预测用户行为,提升博弈模型的实时性。 -
多能源系统协同
扩展至包含光伏、储能的微电网场景,设计跨能源形式的博弈框架。 -
隐私与安全机制
在分布式通信中引入加密技术与可信计算,防止策略信息泄露。
六、结论
博弈论与DMPC的结合为电动车与电网系统的协同优化提供了有效工具。通过Stackelberg博弈、纳什均衡等模型,能够协调多主体利益,实现负荷均衡与成本控制。然而,通信可靠性、鲁棒性及计算效率仍是实际部署的瓶颈。未来研究需进一步融合智能算法与安全机制,推动车网互动向更高智能化与可靠性发展。
📚2 运行结果
部分代码:
F2 = figure(2);
F2.WindowState = 'maximized';
F2.Position = [1,1,1366,400];
B_Fig2 = bar(L_Fig2);
B_Fig2.FaceColor = [0.25 0.25 0.25];
set(findall(gcf,'-property','FontSize'),'FontSize',22);
set(findall(gcf,'-property','FontWeight'),'FontWeight','Bold');
set(findall(gcf,'-property','FontName'),'FontName','Times New Roman');
xlabel('Time of Day (hour)');
xticks(2:2:24);
xlim([0.5 24.5]);
ylim([0 105000]);
ylabel('Load (kWh)');
%% Fig 3
L0 = load('Fig3_L.mat');
L_Fig3 = L0.Fig3_L;
F3 = figure(3);
F3.WindowState = 'maximized';
F3.Position = [1,1,1366,400];
B_Fig3 = bar(L_Fig3);
B_Fig3(1).FaceColor = [0.88 0.88 0.88];
B_Fig3(2).FaceColor = [0.22 0.22 0.22];
B_Fig3(3).FaceColor = [0.6 0.6 0.6];
set(findall(gcf,'-property','FontSize'),'FontSize',18);
set(findall(gcf,'-property','FontSize'),'FontSize',22);
set(findall(gcf,'-property','FontWeight'),'FontWeight','Bold');
set(findall(gcf,'-property','FontName'),'FontName','Times New Roman');
xlabel('Time of Day (hour)');
xticks(2:2:24);
xlim([0.5 24.5]);
ylabel('Load (kWh)');
legend('Cost Reduction','Multi-objective (a=1)','Load-Levelling','Location','northwest');
%% Figure 4
L11_5000 = load('L_1_1_5000.mat');
L11_10000 = load('L_1_1_10000.mat');
L11_15000 = load('L_1_1_15000.mat');
L11_20000 = load('L_1_1_20000.mat');
🎉3 文献来源
部分理论来源于网络,如有侵权请联系删除。
[1]Arash Karimi (2021) A Game Theoretic Approach to Distributed Model-Predictive Control of Smart Grids