【自适应傅里叶分解AFD】多通道信号分析的自适应傅里叶分解(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

自适应傅里叶分解(AFD)在多通道信号分析中的研究

一、自适应傅里叶分解(AFD)的基本原理

二、多通道信号分析的挑战与现有方法

三、AFD在多通道信号分析中的扩展:多通道AFD(MAFD)

四、AFD与传统方法的性能对比

五、最新算法改进方向

六、典型应用案例

七、总结与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

自适应傅里叶分解(AFD)在多通道信号分析中的研究

 摘要:
自传统傅里叶分解基于预定义基础的演变,自适应傅里叶分解(AFD)利用自适应基础实现快速能量收敛。本文将AFD扩展到多通道情况,寻找所有通道中的共同自适应基础。所提出的多通道AFD(MAFD)方案包括用于一般信号的多通道核心AFD和用于具有共同内部功能的特定信号的多通道展开AFD。由于原始AFD的优点,MAFD可以通过跨通道计算瞬时时频分布(TTFD)来提供稀疏的联合时频分布。对合成和真实信号的模拟表明,所提出的方案可以找到并应用具有期望特性的共同自适应基础,并保持AFD的高潜力在实际应用中展现。

物理科学和工程学中的观测往往形成时间变化的信号,这些信号无法通过传统的傅里叶分析充分描述。描述一维时间变化信号的单变量调制振荡模型将信号描述为幅度和频率调制的振荡,提供了一种吸引人的表示,并已成为标准模型。为了描述具有任意通道数量的时间变化信号,将单变量调制振荡模型扩展为调制多变量振荡模型。该模型假设一个共同的振荡跨越所有单独的通道信号。多通道信号分析的一个重要任务是识别共同的振荡结构。

随着对多通道信号分析的兴趣增加,已经提出了几种传统算法的多通道扩展,以探索多个通道之间的依赖关系。在相关工作中,将小波脊变换扩展到调制多变量振荡中,其中多变量小波变换(MWT)识别局部最大点以计算小波系数中的尺度参数,从而可以提供多通道信号的局部振荡动态。为了减少小波变换中线性投影的限制,将同步压缩变换引入到MWT中。多变量同步压缩小波变换(MSWT)重新分配分解分量的能量,使其集中在调制振荡的瞬时频率曲线周围。不幸的是,小波变换是基于预定义的母小波的。为了自适应地分解信号,提出了经验模态分解(EMD),后来扩展为用于分析多通道信号的多变量EMD(MEMD)。MEMD不同于在每个通道上分别分析信号的EMD,而是同时分析所有通道的信号,并可以自适应地为所有通道产生相同数量的本征模态函数(IMFs)。为了提高计算效率,提出了快速MEMD(FMEMD)。尽管MEMD在合成正弦信号和实际信号的分析中表现良好,但它缺乏数学理论和必要的理论保证。为了解决这个问题,文献中提出了几种新颖的自适应分解方法。基于傅里叶理论和零相位滤波以及离散余弦和正弦变换,引入了傅里叶分解方法(FDM)、傅里叶正交变换(FQT)以及相应的多通道扩展称为多变量FDM(MFDM)。在MFDM中,频域分量通过零相位滤波器组重新排列,形成用于分析多变非线性和非平稳时间序列的带限傅里叶本征带函数(FIBFs)。除了MFDM,源自变分模态分解(VMD)的多变量变分模态分解(MVMD)通过最小化频带范围限制在中心频率周围的模态的集体带宽,实现了多变量数据的分解。然后,为了更好地处理宽带和时间变化的多通道信号,提出了非线性啁啾模态分解(NCMD)的多变量版本,即多变量非线性啁啾模态分解(MNCMD)和多变量本征啁啾模态分解(MICMD),可以通过最小化跨通道模式带宽之和将多变非线性啁啾模式转换为窄带多变量信号。与MEMD相比,这些新颖的自适应多通道分解方法包括更多的数学定理或数学分析,以避免EMD在模式混合、去趋势不确定性和端点效应伪像方面的限制。然而,与基于基础的分解方法(如传统的傅立叶分解)相比,这些新颖的自适应多通道分解方法的分解分量仍然缺乏严格数学基础的支持,无法用数学表达式来表述。这个问题使得分解分量的特性难以在数学上解释和分析,从而限制了它们在实践中的应用。在本研究中,将MEMD、MFDM、MVMD和MNCMD统称为经验分解方法。结合基于基础的和经验的分解方法的优势,提出了AFD。

AFD将时间变化信号进行贪婪迭代分解,将其分解为一系列仅包含非负解析相位导数的单分量(MCs)。AFD的分解仍然基于基础。然而,与传统的基于基础的分解方法使用预定义基础不同,AFD使用自适应基础来分解信号,从而实现快速能量收敛。

AFD的优势
自适应分解:
自适应基础;
正交分解分量;
分解分量是仅包含非负解析相位导数的单分量;
快速能量收敛;
严谨的数学基础。
提供瞬态时频分布:
正确的总能量;
非负实值性;
弱和强有限支持。
工具箱中包含的AFD方法
核心AFD:
单通道
无FFT(慢)
有FFT(快)
多通道
无FFT(慢)
有FFT(快)
展开AFD:
单通道
无FFT(慢)
有FFT(快)
多通道
无FFT(慢)
有FFT(快)

一、自适应傅里叶分解(AFD)的基本原理

自适应傅里叶分解(AFD)是一种基于贪婪算法的信号分解方法,其核心在于动态生成适配输入信号的基函数,而非依赖预定义的固定基(如傅里叶变换的正弦基)。AFD的数学基础源于Hardy空间和L²空间的正交分解,通过最大投影原理(Maximum Selection Principle, MSP)迭代提取信号中的高能量成分,最终将信号表示为一系列单分量(Mono-components)的线性组合。

  1. 单分量特性
    AFD分解得到的单分量具有非负的解析相位导数,即其瞬时频率具有明确的物理意义。这一特性使AFD在时频分析中优于传统方法(如短时傅里叶变换STFT),尤其适用于非平稳信号。

  2. 算法流程

    • 基函数生成:采用Takenaka-Malmquist系统,基函数Bk(z)Bk​(z)由Blaschke乘积构成,通过Gram-Schmidt正交化从Szegő核中推导。
    • 能量优化:每一步分解通过最大化信号在当前基函数上的投影能量,逐步逼近信号的主要成分。
    • 收敛性:AFD的收敛速度与离散傅里叶变换(DFT)相当,计算复杂度低,适用于实时处理。
二、多通道信号分析的挑战与现有方法

多通道信号(如多传感器数据、多导联生物信号)分析的难点在于:

  1. 通道间相关性:需捕捉跨通道的共同振荡模式或频率结构。
  2. 频率重叠:传统方法(如傅里叶变换)难以分离重叠频段的成分。
  3. 数学基础薄弱:经验模态分解(EMD)类方法缺乏严格的数学支撑。

现有方法包括:

  • 多变量EMD(MEMD) :通过多维空间投影处理多通道信号,但存在模式混合和端点效应。
  • 多变量变分模态分解(MVMD) :需预设模态数量,且计算复杂度高。
  • 小波变换扩展:如多变量同步压缩小波变换(MSWT),但依赖预定义母小波,灵活性不足。
三、AFD在多通道信号分析中的扩展:多通道AFD(MAFD)

为应对多通道信号分析的挑战,研究者提出了多通道自适应傅里叶分解(Multi-channel AFD, MAFD),其核心思想是跨通道寻找共同的自适应基,实现联合时频分析。

  1. MAFD算法设计

    • 多通道核心AFD:适用于一般信号,通过最大化跨通道投影能量的总和,生成共同的基函数序列。
    • 多通道展开AFD:针对具有共同内部函数(如共享调制结构)的信号,进一步优化基函数选择。
    • 瞬时时频分布(TTFD) :通过跨通道能量分布计算,生成稀疏的联合时频表示,提升频率分辨率。
  2. 关键优势

    • 自适应基生成:无需预定义基函数,避免小波或傅里叶变换的频率固定缺陷。
    • 正交分解:分量间能量无交叠,避免模式混合问题。
    • 数学严谨性:基于正交投影理论,分解过程可严格收敛。
四、AFD与传统方法的性能对比
  1. 重构误差与收敛性
    AFD在非平稳信道重构中,能量误差随分解步长增长显著低于傅里叶变换(FT)和STFT。例如,在无线信道仿真中,AFD的收敛速度更快,且无需分段处理。

  2. 时频分辨率

    • 频率集中度:AFD的时频分布(如Clarke信道分析)显示更高的频点集中度,而STFT因窗长限制导致频率模糊。
    • 动态调整能力:AFD可自适应调整基函数,适用于快时变环境(如高速移动信道),而STFT难以适应。
  3. 计算效率
    AFD的算法复杂度与DFT相当,且通过优化技术(如粒子群优化、遗传算法)可进一步提升实时性。

五、最新算法改进方向
  1. 能量压缩优化
    传统AFD倾向于优先提取低频能量,导致高频分量压缩不足。改进算法通过动态调整能量优化目标,平衡高低频能量分布,提升整体压缩率。

  2. 快速基搜索技术
    引入无迹卡尔曼滤波(UKF)、粒子群优化(PSO)等智能算法,加速基函数选择过程,使其适用于实时信号处理(如心电图分析)。

  3. Blaschke展开与信号压缩
    结合Blaschke展开理论,提出AFD-based信号压缩算法,在ECG信号压缩中实现高保真度与低存储需求。

六、典型应用案例
  1. 非平稳无线信道分析
    在Clarke信道模型中,AFD提供高精度的时频表示与信道重构,优于FT和STFT,适用于5G高速移动场景。

  2. 机械故障诊断

    • 滚动轴承故障检测:AFD结合包络谱分析,有效分离故障冲击成分,信噪比(SNR)较EMD提升30%以上。
    • 转子摩擦检测:通过多通道AFD分解振动信号,准确识别摩擦引起的频率调制特征。
  3. 金融时间序列分析
    AFD分解股票价格数据,提取趋势项与波动项,结合瞬时频率分析市场周期,优于传统经验模态分解。

  4. 医学信号处理

    • 多导联ECG分析:MAFD分离心电信号中的呼吸干扰与心肌电活动,提升心律失常检测精度。
    • COVID-19疫情数据建模:AFD分解病例数时间序列,识别疫情波动的多尺度特征。
七、总结与展望

AFD在多通道信号分析中的核心优势在于其自适应基生成能力数学严谨性,尤其在处理非平稳、多分量重叠信号时表现突出。未来研究方向包括:

  1. 多模态数据融合:结合深度学习与AFD,实现跨模态信号(如图像-语音)联合分析。
  2. 实时性增强:通过硬件加速(如FPGA)优化算法,满足工业在线监测需求。
  3. 高维扩展:将AFD推广至张量空间,处理多通道-多维度信号(如视频流、脑电网络)。

📚2 运行结果

部分代码:

% set decomposition method: Single Channel Conventional AFD
afdcal.setDecompMethod(1);
% set searching dictionary generation method: square searching dictionary
afdcal.setDicGenMethod(1);
% generate searching dictionary
afdcal.genDic(0.02,0.95);
afdcal.plot_dic();
% generate evaluators
afdcal.genEva();
afdcal.plot_evaluator();
% initilize decomposition
afdcal.init_decomp()
% decomposition 50 levels
N=50;
for n=1:N
    disp(afdcal.level+1)
    afdcal.nextDecomp()
    [~,systemview]=memory;
    if 1-systemview.PhysicalMemory.Available/systemview.PhysicalMemory.Total>=85/100
        warning(['Memory is not enough -> Decomposition stop, current level: ' num2str(afdcal.level)])
        break
    end
end
% plot energy distribution at level 1
afdcal.plot_S1(1);
% plot decomposition basis at level 2
afdcal.plot_basis(2);
% plot decomposition component at level 3
afdcal.plot_decompComp(3);
% plot reconstruction signal of first 20 levels
afdcal.plot_reSig(20);
% plot energy rate
afdcal.plot_energyRate(afdcal.level);

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

T. Qian, L. Zhang, and Z. Li, “Algorithm of adaptive Fourier decomposition,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5899–5906, 2011.

T. Qian, Y. B. Wang, “Adaptive Fourier series -- a variation of greedy algorithm," Adv. Comput. Math., vol. 34, no. 3, pp. 279–293, 2011.

Z. Wang, C. M. Wong, A. Rosa, T. Qian, and F. Wan, “Adaptive Fourier decomposition for multi-channel signal analysis,” IEEE Trans. Signal Process., vol. 70, pp. 903–918, 2022.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值