先Po上空间自回归模型方程的公式
【翻了好多资料,还是觉得直接耐着心从公式入手理解的最到位了,其中可能会有计量经济学或者统计学上的术语不太好理解,我统一放到了文末一块解释~】
y=ρW1y+βx+ε,ε=λW2ε+μ
- 【首先明确:OLS、SLM、SEM都是基于上面这个方程得出的,不同系数对应的不同情况形成了不同的空间自回归模型。】
- OLS(普通线性回归模型)
(不得不说每个模型的命名提示性还蛮大)
- 【其次,OLS与SLM、SEM两个模型的区别在于,OLS是单纯的线性数量关系*(其实就是我们平常最熟悉的那个y=ax+b)*,也就是适用于自变量、因变量都不存在空间上的相关性的情况,,即不考虑变量之间的空间权重】
上式,y为因变量,X为自变量,W代表空间权重矩阵,
由于OLS不考虑空间上相邻区域变量的互相影响,W1、W2前面的系数ρ、λ都为0,因此得到OLS的方程为:
y=βx+μ