目录
一、理论原理
空间自回归模型(Spatial Autoregressive Model,SAR)是一种用于分析具有空间相关性的数据的统计模型。它假设观测值之间的相关性不仅取决于传统的时间或其他因素,还受到空间位置的影响。
二、数据准备
为了演示 SAR 模型在 Stata 中的操作,我们将使用一个包含城市经济数据和地理空间信息的数据集。假设我们有以下变量:
gdp
:城市的国内生产总值(GDP),作为因变量。investment
:城市的投资水平,作为解释变量。latitude
和longitude
:城市的经纬度坐标,用于构建空间权重矩阵。
在实际应用中,数据的获取和预处理是非常重要的步骤。确保数据的准确性、完整性和合理性对于后续的分析结果至关重要。
首先,需要对数据进行清理,处理缺失值和异常值。然后,根据研究目的和数据特点,可能需要对变量进行标准化或对数变换等操作,以满足模型的假设和提高模型的性能。
三、程序代码及解释
* 导入数据
import d