数学分析 反常积分(第11章)

一.反常积分的概念
在这里插入图片描述

相对于普通的定积分(称为正常积分),下面提出2类反常积分

1.无穷积分的提出:
在这里插入图片描述
2.瑕积分的提出:
在这里插入图片描述
在这里插入图片描述
二.无穷积分
1.定义:
在这里插入图片描述
在这里插入图片描述
2.性质
(1)无穷积分收敛的柯西准则:

定理11.1: ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛的充要条件是:对 ∀ ε > 0 , ∃ G ≥ a ∀ε>0,∃G≥a ε>0,Ga,只要 u 1 , u 2 > G u_1,u_2>G u1,u2>G,就有 ∣ ∫ a u 2 f ( x ) d x − ∫ a u 1 f ( x ) d x ∣ = ∣ ∫ u 1 u 2 f ( x ) d x ∣ < ε |\int_a^{u_2}f(x)dx-\int_a^{u_1}f(x)dx|=|\int_{u_1}^{u_2}f(x)dx|<ε au2f(x)dxau1f(x)dx=u1u2f(x)dx<ε
在这里插入图片描述

(2)线性运算的性质:

性质1:若 ∫ a + ∞ f 1 ( x ) d x , ∫ a + ∞ f 2 ( x ) d x \int_a^{+\infty}f_1(x)dx,\int_a^{+\infty}f_2(x)dx a+f1(x)dx,a+f2(x)dx均收敛, k 1 , k 2 k_1,k_2 k1,k2为任意常数,则 ∫ a + ∞ [ k 1 f 1 ( x ) + k 2 f 2 ( x ) ] d x \int_a^{+\infty}[k_1f_1(x)+k_2f_2(x)]dx a+[k1f1(x)+k2f2(x)]dx也收敛,且 ∫ a + ∞ [ k 1 f 1 ( x ) + k 2 f 2 ( x ) ] d x = k 1 ∫ a + ∞ f 1 ( x ) + k 2 ∫ a + ∞ f 2 ( x ) d x ( 1 ) \int_a^{+\infty}[k_1f_1(x)+k_2f_2(x)]dx=k_1\int_a^{+\infty}f_1(x)+k_2\int_a^{+\infty}f_2(x)dx\qquad(1) a+[k1f1(x)+k2f2(x)]dx=k1a+f1(x)+k2a+f2(x)dx(1)

(3)积分区间的可加性:

性质2:若 f f f在任何有限区间[a,u]上可积,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx ∫ b + ∞ f ( x ) d x \int_b^{+\infty}f(x)dx b+f(x)dx同敛态(即同时收敛或同时发散),且有 ∫ a + ∞ f ( x ) d x = ∫ a b f ( x ) d x + ∫ b + ∞ f ( x ) d x ( 2 ) \int_a^{+\infty}f(x)dx=\int_a^bf(x)dx+\int_b^{+\infty}f(x)dx\qquad(2) a+f(x)dx=abf(x)dx+b+f(x)dx(2)其中右边第1项是定积分

推论: ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛的另1个充要条件是:对 ∀ ε > 0 , ∃ G ≥ a ∀ε>0,∃G≥a ε>0,Ga,当 u > G u>G u>G时,总有 ∣ ∫ a + ∞ f ( x ) d x ∣ < ε |\int_a^{+\infty}f(x)dx|<ε a+f(x)dx<ε

(4)绝对收敛与条件收敛的关系:

绝对收敛与条件收敛的概念:
在这里插入图片描述

性质3:若 f f f在任何有限区间[a,u]上可积,且有 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx收敛,则 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx也收敛,且 ∣ ∫ a + ∞ f ( x ) d x ∣ ≤ ∫ a + ∞ ∣ f ( x ) ∣ d x |\int_a^{+\infty}f(x)dx|≤\int_a^{+\infty}|f(x)|dx a+f(x)dxa+f(x)dx
在这里插入图片描述

3.非负函数无穷积分的敛散判别法
(1)非负函数的无穷积分的比较判别法:

定理11.2:设定义在 [ a , + ∞ ) [a,+\infty) [a,+)上的2个非负函数 f , g f,g f,g都在任何有限区间 [ a , u ] [a,u] [a,u]上可积,且满足 f ( x ) ≤ g ( x )   ( x ≥ a ) f(x)≤g(x)\,(x≥a) f(x)g(x)(xa),则当 ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx收敛时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx必收敛(或当 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx发散时, ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx必发散)
在这里插入图片描述

(2)非负函数的无穷积分的比较判别法的极限形式:

推论1:若 f , g f,g f,g都在任何有限区间 [ a , u ] [a,u] [a,u]上可积,当 x ∈ [ a , + ∞ ) x∈[a,+\infty) x[a,+)时, f ( x ) ≥ 0 , g ( x ) > 0 f(x)≥0,g(x)>0 f(x)0,g(x)>0,且 lim ⁡ x → + ∞ f ( x ) g ( x ) = c \displaystyle\lim_{x \to +\infty}\frac{f(x)}{g(x)}=c x+limg(x)f(x)=c,则有:
①当 0 < c < + ∞ 0<c<+\infty 0<c<+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx同敛态
②当 c = 0 c=0 c=0时,由 ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx收敛可推知 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx也收敛
③当 c = + ∞ c=+\infty c=+时,由 ∫ a + ∞ g ( x ) d x \int_a^{+\infty}g(x)dx a+g(x)dx发散可推知 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx也发散

(3)非负函数的无穷积分的柯西判别法:

特别地,如果选用 ∫ 1 + ∞ d x x p \int_1^{+\infty}\frac{dx}{x^p} 1+xpdx作为比较对象,则有如下2个推论(称为柯西判别法)

推论2:设 f f f定义在 [ a , + ∞ )   ( a > 0 ) [a,+\infty)\,(a>0) [a,+)(a>0)上,且在任何有限区间 [ a , u ] [a,u] [a,u]上可积,则有:
①当 0 ≤ f ( x ) ≤ 1 x p   ( x ≥ a ) 0≤f(x)≤\frac{1}{x^p}\,(x≥a) 0f(x)xp1(xa) p > 1 p>1 p>1时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛
②当 f ( x ) ≥ 1 x p   ( x ≥ a ) f(x)≥\frac{1}{x^p}\,(x≥a) f(x)xp1(xa) p ≤ 1 p≤1 p1时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx发散

推论3:设 f f f是定义在 [ a , + ∞ ) [a,+\infty) [a,+)上的非负函数,且在任何有限区间 [ a , u ] [a,u] [a,u]上可积,且 lim ⁡ x → + ∞ x p f ( x ) = λ \displaystyle\lim_{x \to +\infty}x^pf(x)=λ x+limxpf(x)=λ,则有:
①当 p > 1 , 0 ≤ λ < + ∞ p>1,0≤λ<+\infty p>1,0λ<+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛
②当 p ≤ 1 , 0 < λ ≤ + ∞ p≤1,0<λ≤+\infty p1,0<λ+时, ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx发散

4.一般无穷积分的敛散判别法
(1)无穷积分的狄利克雷判别法(Dirichlet Discriminance):

定理11.3:若 F ( u ) = ∫ a u f ( x ) d x F(u)=\int_a^uf(x)dx F(u)=auf(x)dx [ a , + ∞ ] [a,+\infty] [a,+]上有界, g ( x ) g(x) g(x) [ a , + ∞ ] [a,+\infty] [a,+]上当 x → + ∞ x→+\infty x+时单调趋于0,则 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛
在这里插入图片描述

(2)无穷积分的阿贝尔判别法(Abel Discriminance):

定理11.4:若 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛, g ( x ) g(x) g(x) [ a , + ∞ ) [a,+\infty) [a,+)上单调有界,则 ∫ a + ∞ f ( x ) g ( x ) d x \int_a^{+\infty}f(x)g(x)dx a+f(x)g(x)dx收敛

5.注意事项:

x → + ∞ x→+\infty x+时被积函数即使不趋于0,甚至是无界的,无穷积分仍有可能收敛
在这里插入图片描述
不过,若 f ( x ) f(x) f(x) [ a , + ∞ ) [a,+\infty) [a,+)上单调,则 lim ⁡ x → + ∞ f ( x ) = 0 \displaystyle\lim_{x \to +\infty}f(x)=0 x+limf(x)=0 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛的必要条件
在这里插入图片描述
在这里插入图片描述

三.瑕积分
1.定义:
在这里插入图片描述
在这里插入图片描述
2.性质
(1)线性运算的性质:

性质1:设 f 1 , f 2 f_1,f_2 f1,f2的瑕点均为 a , k 1 , k 2 a,k_1,k_2 a,k1,k2为常数,则当瑕积分 ∫ a b f 1 ( x ) d x , ∫ a b f 2 ( x ) d x \int_a^bf_1(x)dx,\int_a^bf_2(x)dx abf1(x)dx,abf2(x)dx都收敛时,瑕积分 ∫ a b [ k 1 f 1 ( x ) + k 2 f 2 ( x ) ] d x \int_a^b[k_1f_1(x)+k_2f_2(x)]dx ab[k1f1(x)+k2f2(x)]dx必定收敛,并有 ∫ a b [ k 1 f 1 ( x ) + k 2 f 2 ( x ) ] d x = k 1 ∫ a b f 1 ( x ) + k 2 ∫ a b f 2 ( x ) d x ( 1 ) \int_a^b[k_1f_1(x)+k_2f_2(x)]dx=k_1\int_a^bf_1(x)+k_2\int_a^bf_2(x)dx\qquad(1) ab[k1f1(x)+k2f2(x)]dx=k1abf1(x)+k2abf2(x)dx(1)

(2)积分区间的可加性:

性质2:设 f f f的瑕点为 x = a , c ∈ ( a , b ) x=a,c∈(a,b) x=a,c(a,b)为任一常数,则瑕积分 ∫ a b f ( x ) d x , ∫ a c f ( x ) d x \int_a^bf(x)dx,\int_a^cf(x)dx abf(x)dx,acf(x)dx同敛态,并有 ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x ( 2 ) \int_a^bf(x)dx=\int_a^cf(x)dx+\int_c^bf(x)dx\qquad(2) abf(x)dx=acf(x)dx+cbf(x)dx(2)其中 ∫ c b f ( x ) d x \int_c^bf(x)dx cbf(x)dx为定积分

(3)绝对收敛与条件收敛的关系:
在这里插入图片描述

性质3:设 f f f的瑕点为 x = a , f x=a,f x=a,f ( a , b ] (a,b] (a,b]的任一内闭区间 [ u , b ] [u,b] [u,b]上可积;则当 ∫ a b ∣ f ( x ) ∣ d x \int_a^b|f(x)|dx abf(x)dx收敛时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx也必定收敛,并有 ∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x ( 3 ) |\int_a^bf(x)dx|≤\int_a^b|f(x)|dx\qquad(3) abf(x)dxabf(x)dx(3)

3.非负函数的瑕积分的敛散判别法
(1)瑕积分的比较判别法:

定理11.6:设定义在 ( a , b ] (a,b] (a,b]上的2个函数 f , g f,g f,g在任何 [ u , b ] ⊂ ( a , b ] [u,b]\sub(a,b] [u,b](a,b]上均可积,且其瑕点均为 x = a x=a x=a,且满足 0 ≤ f ( x ) ≤ g ( x )   ( a < x ≤ b ) 0≤f(x)≤g(x)\,(a<x≤b) 0f(x)g(x)(a<xb),则当 ∫ a b g ( x ) d x \int_a^bg(x)dx abg(x)dx收敛时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx必定收敛(或当 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx发散时, ∫ a b g ( x ) d x \int_a^bg(x)dx abg(x)dx必定发散)

(2)瑕积分的比较判别法的极限形式:

推论1:设定义在 ( a , b ] (a,b] (a,b]上的2个函数 f , g f,g f,g在任何 [ u , b ] ⊂ ( a , b ] [u,b]\sub(a,b] [u,b](a,b]上均可积,且其瑕点均为 x = a x=a x=a,且满足 f ( x ) ≥ 0 , g ( x ) > 0 f(x)≥0,g(x)>0 f(x)0,g(x)>0,且 lim ⁡ x → a + f ( x ) g ( x ) = c \displaystyle\lim_{x \to a^+}\frac{f(x)}{g(x)}=c xa+limg(x)f(x)=c,则有:
①当 0 < c < + ∞ 0<c<+\infty 0<c<+时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx ∫ a b g ( x ) d x \int_a^bg(x)dx abg(x)dx同敛态
②当 c = 0 c=0 c=0时,由 ∫ a b g ( x ) d x \int_a^bg(x)dx abg(x)dx收敛可推知 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx也收敛
③当 c = + ∞ c=+\infty c=+时,由 ∫ a b g ( x ) d x \int_a^bg(x)dx abg(x)dx发散可推知 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx也发散

(3)柯西判别法:

特别地,如果选用 ∫ a b d x ( x − a ) p \int_a^b\frac{dx}{(x-a)^p} ab(xa)pdx作为比较对象,则有如下2个推论(称为柯西判别法)

推论2:设 f f f定义在 ( a , b ] (a,b] (a,b]上, a a a为其瑕点,且在任何 [ u , b ] ⊂ ( a , b ] [u,b]\sub(a,b] [u,b](a,b]上可积,则有:
①当 0 ≤ f ( x ) ≤ 1 ( x − a ) p 0≤f(x)≤\frac{1}{(x-a)^p} 0f(x)(xa)p1 0 < p < 1 0<p<1 0<p<1时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx收敛
②当 f ( x ) ≥ 1 ( x − a ) p f(x)≥\frac{1}{(x-a)^p} f(x)(xa)p1 p ≥ 1 p≥1 p1时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx发散

推论3:设 f f f是定义在 ( a , b ] (a,b] (a,b]上的非负函数, a a a为其瑕点,且在任何 [ u , b ] ⊂ ( a , b ] [u,b]\sub(a,b] [u,b](a,b]上可积,如果 lim ⁡ x → a + ( x − a ) p f ( x ) = λ \displaystyle\lim_{x \to a^+}(x-a)^pf(x)=λ xa+lim(xa)pf(x)=λ,则有:
①当 0 < p < 1 , 0 ≤ λ < + ∞ 0<p<1,0≤λ<+\infty 0<p<1,0λ<+时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx收敛
②当 p ≥ 1 , 0 < λ ≤ + ∞ p≥1,0<λ≤+\infty p1,0<λ+时, ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx发散

4.一般函数的瑕积分的敛散判别法
(1)瑕积分收敛的充要条件:

定理11.5:瑕积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx(瑕点为 x = a x=a x=a)收敛的充要条件是:对 ∀ ε > 0 , ∃ δ > 0 ∀ε>0,∃δ>0 ε>0,δ>0,只要 u 1 , u 2 ∈ ( a , a + δ ) u_1,u_2∈(a,a+δ) u1,u2(a,a+δ),总有 ∣ ∫ u 1 b f ( x ) d x − ∫ u 2 b f ( x ) d x ∣ = ∣ ∫ u 1 u 2 f ( x ) d x ∣ < ε |\int_{u_1}^bf(x)dx-\int_{u_2}^bf(x)dx|=|\int_{u_1}^{u_2}f(x)dx|<ε u1bf(x)dxu2bf(x)dx=u1u2f(x)dx<ε

(2)瑕积分的狄利克雷判别法:

定理11.7:设 a a a f ( x ) f(x) f(x)的瑕点, F ( u ) = ∫ u b f ( x ) d x F(u)=\int_u^bf(x)dx F(u)=ubf(x)dx ( a , b ] (a,b] (a,b]上有界, g ( x ) g(x) g(x) ( a , b ] (a,b] (a,b]上单调且 lim ⁡ x → a + g ( x ) = 0 \displaystyle\lim_{x→a^+}g(x)=0 xa+limg(x)=0,则瑕积分 ∫ a b f ( x ) g ( x ) d x \int_a^bf(x)g(x)dx abf(x)g(x)dx收敛

(3)瑕积分的阿贝尔判别法:

定理11.8:设 a a a f ( x ) f(x) f(x)的瑕点,瑕积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx收敛, g ( x ) g(x) g(x) ( a , b ] (a,b] (a,b]上单调且有界,则瑕积分 ∫ a b f ( x ) g ( x ) d x \int_a^bf(x)g(x)dx abf(x)g(x)dx收敛

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值