高等代数 多项式环(第7章)4 n元多项式环

一.n元多项式环(7.9)
1. n n n元多项式的概念
(1) n n n元多项式的概念:
在这里插入图片描述
(2)相关概念:
在这里插入图片描述
2. n n n元多项式的运算
(1) n n n元多项式的加/乘法运算与 n n n元多项式环:
在这里插入图片描述
(2)齐次多项式:
在这里插入图片描述

F F F上所有 n n n m m m次齐次多项式构成的集合是1个线性空间

(3)运算与次数的关系:
在这里插入图片描述

定理1:在 K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]中,2个非0多项式的乘积的首项等于它们的首项的乘积,从而2个非0多项式的乘积仍是非0多项式,即 K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]是无零因子环
在这里插入图片描述

定理2:在 K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn] deg ⁡ f g = deg ⁡ f + deg ⁡ g ( 7 ) \deg{fg}=\deg{f}+\deg{g}\qquad(7) degfg=degf+degg(7)
在这里插入图片描述

3. n n n元多项式的通用性质:
在这里插入图片描述

定理3:设 K K K是1个数域, R R R是1个有单位元的交换环,并且 R R R可以看成 K K K的1个扩环(即 R R R有1个子环 R 1 R_1 R1 K K K同构,且 R R R的单位元是 R 1 R_1 R1的单位元),将 K K K R 1 R_1 R1的同构映射记作 τ \tau τ.设 t 1 , t 2 . . . t n t_1,t_2...t_n t1,t2...tn R R R的元素,令 σ t 1 , t 2 . . . t n : K [ x 1 , x 2 . . . x n ] → R        f ( x 1 , x 2 . . . x n ) = ∑ i 1 , i 2 . . . i n a i 1 , i 2 . . . i n x 1 i 1 x 2 i 2 . . . x n i n ↦ ∑ i 1 , i 2 . . . i n τ ( a i 1 , i 2 . . . i n ) t 1 i 1 t 2 i 2 . . . t n i n σ_{t_1,t_2...t_n}:\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad K[x_1,x_2...x_n]→R\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\:\:\:\:\,\,\\f(x_1,x_2...x_n)=\displaystyle\sum_{i_1,i_2...i_n}a_{i_1,i_2...i_n}x_1^{i_1}x_2^{i_2}...x_n^{i_n}↦\displaystyle\sum_{i_1,i_2...i_n}τ(a_{i_1,i_2...i_n})t_1^{i_1}t_2^{i_2}...t_n^{i_n} σt1,t2...tn:K[x1,x2...xn]Rf(x1,x2...xn)=i1,i2...inai1,i2...inx1i1x2i2...xnini1,i2...inτ(ai1,i2...in)t1i1t2i2...tnin σ t 1 , t 2 . . . t n σ_{t_1,t_2...t_n} σt1,t2...tn K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn] R R R的1个映射,它使得 σ t 1 , t 2 . . . t n ( x i ) = t i   ( i = 1 , 2... n ) σ_{t_1,t_2...t_n}(x_i)=t_i\,(i=1,2...n) σt1,t2...tn(xi)=ti(i=1,2...n).把 f ( x 1 , x 2 . . . x n ) f(x_1,x_2...x_n) f(x1,x2...xn)在此映射下的象记作 f ( t 1 , t 2 . . . t n ) f(t_1,t_2...t_n) f(t1,t2...tn).如果 f ( x 1 , x 2 . . . x n ) + g ( x 1 , x 2 . . . x n ) = h ( x 1 , x 2 . . . x n ) f ( x 1 , x 2 . . . x n ) g ( x 1 , x 2 . . . x n ) = p ( x 1 , x 2 . . . x n ) f(x_1,x_2...x_n)+g(x_1,x_2...x_n)=h(x_1,x_2...x_n)\\f(x_1,x_2...x_n)g(x_1,x_2...x_n)=p(x_1,x_2...x_n) f(x1,x2...xn)+g(x1,x2...xn)=h(x1,x2...xn)f(x1,x2...xn)g(x1,x2...xn)=p(x1,x2...xn)那么 f ( t 1 , t 2 . . . t n ) + g ( t 1 , t 2 . . . t n ) = h ( t 1 , t 2 . . . t n ) f ( t 1 , t 2 . . . t n ) g ( t 1 , t 2 . . . t n ) = p ( t 1 , t 2 . . . t n ) f(t_1,t_2...t_n)+g(t_1,t_2...t_n)=h(t_1,t_2...t_n)\\f(t_1,t_2...t_n)g(t_1,t_2...t_n)=p(t_1,t_2...t_n) f(t1,t2...tn)+g(t1,t2...tn)=h(t1,t2...tn)f(t1,t2...tn)g(t1,t2...tn)=p(t1,t2...tn)即映射 σ t 1 , t 2 . . . t n σ_{t_1,t_2...t_n} σt1,t2...tn保持加法和乘法运算,称为** x 1 , x 2 . . . x n x_1,x_2...x_n x1,x2...xn t 1 , t 2 . . . t n t_1,t_2...t_n t1,t2...tn带入**
在这里插入图片描述

4. n n n元多项式函数
(1)概念:
在这里插入图片描述
(2)非零多项式诱导的函数:

定理4:设 h ( x 1 , x 2 . . . x n ) h(x_1,x_2...x_n) h(x1,x2...xn)是数域 K K K上的 n n n元非零多项式,则其诱导的 n n n元多项式函数 h h h不是零函数
在这里插入图片描述

(3)多项式相等的充要条件:

定理5:设 K K K是数域,在 K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]中,2个 n n n元多项式 f ( x 1 , x 2 . . . x n ) , g ( x 1 , x 2 . . . x n ) f(x_1,x_2...x_n),g(x_1,x_2...x_n) f(x1,x2...xn),g(x1,x2...xn)相等当且仅当它们诱导的多项式函数 f , g f,g f,g相等
在这里插入图片描述

(4)数域上的 n n n元多项式函数环:
在这里插入图片描述
(5)代数簇:
在这里插入图片描述
5.数域 K K K n n n元多项式环的结构
(1)相关概念:
在这里插入图片描述
(2) n n n元多项式不可约的判定:

命题1:在 K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]中,次数大于0的多项式 p ( x 1 , x 2 . . . x n ) p(x_1,x_2...x_n) p(x1,x2...xn)不可约当且仅当其不能分解成2个次数较低的多项式的乘积
在这里插入图片描述

(3) n n n元多项式环中的唯一因式分解定理:
在这里插入图片描述

定理6(唯一因式分解定理): K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]中每个次数大于0的多项式 f ( x 1 , x 2 . . . x n ) f(x_1,x_2...x_n) f(x1,x2...xn)都能唯一地分解成数域 K K K上有限个不可约多项式的乘积
在这里插入图片描述

(4) n n n元多项式的标准分解式:
在这里插入图片描述
二.n元对称多项式(7.10)
在这里插入图片描述
1. n n n元对称多项式
(1)定义:
在这里插入图片描述
(2)性质:
在这里插入图片描述
(3) n n n元初等对称多项式:
在这里插入图片描述
2.数域 K K K n n n元对称多项式组成的集合 W W W的结构
(1) W W W n n n元多项式环的子环:

命题2: W W W K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]的1个子环
在这里插入图片描述

命题3:设 f 1 , f 2 . . . f n ∈ W f_1,f_2...f_n∈W f1,f2...fnW,则对 ∀ g ( x 1 , x 2 . . . x n ) = ∑ i 1 , i 2 . . . i n b i 1 i 2 . . . i n x 1 i 1 x 2 i 2 . . . x n i n ∈ K [ x 1 , x 2 . . . x n ] \forall g(x_1,x_2...x_n)=\displaystyle\sum_{i_1,i_2...i_n}b_{i_1i_2...i_n}x_1^{i_1}x_2^{i_2}...x_n^{i_n}∈K[x_1,x_2...x_n] g(x1,x2...xn)=i1,i2...inbi1i2...inx1i1x2i2...xninK[x1,x2...xn],有 g ( f 1 , f 2 . . . f n ) = ∑ i 1 , i 2 . . . i n b i 1 i 2 . . . i n f 1 i 1 f 2 i 2 . . . f n i n ∈ W g(f_1,f_2...f_n)=\displaystyle\sum_{i_1,i_2...i_n}b_{i_1i_2...i_n}f_1^{i_1}f_2^{i_2}...f_n^{i_n}∈W g(f1,f2...fn)=i1,i2...inbi1i2...inf1i1f2i2...fninW即对称多项式的多项式仍是对称多项式.特别地,有 g ( σ 1 , σ 2 . . . σ n ) ∈ W g(σ_1,σ_2...σ_n)∈W g(σ1,σ2...σn)W即初等对称多项式 σ 1 , σ 2 . . . σ n σ_1,σ_2...σ_n σ1,σ2...σn的多项式仍是对称多项式
在这里插入图片描述

(2)对称多项式基本定理:

定理7(对称多项式基本定理):对数域 K K K上任一 n n n元对称多项式 f ( x 1 , x 2 . . . x n ) f(x_1,x_2...x_n) f(x1,x2...xn),都存在 K K K上唯一一个 n n n元多项式 g ( x 1 , x 2 . . . x n ) g(x_1,x_2...x_n) g(x1,x2...xn),使得 f ( x 1 , x 2 . . . x n ) = g ( σ 1 , σ 2 . . . σ n ) f(x_1,x_2...x_n)=g(σ_1,σ_2...σ_n) f(x1,x2...xn)=g(σ1,σ2...σn) K K K上任一 n n n元对称多项式都可表示成初等对称多项式 σ 1 , σ 2 . . . σ n σ_1,σ_2...σ_n σ1,σ2...σn的多项式
在这里插入图片描述

3.数域 K K K上一元多项式的判别式
(1)判别式的概念:

命题4:数域 K K K上首项系数为1的一元多项式 f ( x ) = x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 f(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0 f(x)=xn+an1xn1+...+a1x+a0在复数域中有重根的充要条件是 g ( − a n − 1 , a n − 2 . . . ( − 1 ) n a 0 ) = 0 g(-a_{n-1},a_{n-2}...(-1)^na_0)=0 g(an1,an2...(1)na0)=0
在这里插入图片描述
在这里插入图片描述

(2)求判别式:
在这里插入图片描述
(3)通过初等对称多项式表示幂和:

牛顿公式:在 K [ x 1 , x 2 . . . x n ] K[x_1,x_2...x_n] K[x1,x2...xn]中,当 1 ≤ k ≤ n 1≤k≤n 1kn时,有 s k − σ 1 s k − 1 + σ 2 s k − 2 + . . . + ( − 1 ) k − 1 σ k − 1 s 1 + ( − 1 ) k k σ k = 0 s_k-σ_1s_{k-1}+σ_2s_{k-2}+...+(-1)^{k-1}σ_{k-1}s_1+(-1)^kkσ_k=0 skσ1sk1+σ2sk2+...+(1)k1σk1s1+(1)kkσk=0 k > n k>n k>n时,有 s k − σ 1 s k − 1 + σ 2 s k − 2 + . . . + ( − 1 ) n − 1 σ n − 1 s k − n + 1 + ( − 1 ) n σ n s k − n = 0 s_k-σ_1s_{k-1}+σ_2s_{k-2}+...+(-1)^{n-1}σ_{n-1}s_{k-n+1}+(-1)^nσ_ns_{k-n}=0 skσ1sk1+σ2sk2+...+(1)n1σn1skn+1+(1)nσnskn=0
在这里插入图片描述

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值